

STUDY OF CHANNEL ESTIMATION AND FREQUENCY STEP IN OFDM SYSTEMS WITH APPLICATION ON DVB-T2

By

Mahmoud Esam Mohamed Ahmed Abdelgelil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND ELECTRICAL COMMUNICATION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

STUDY OF CHANNEL ESTIMATION AND FREQUENCY STEP IN OFDM SYSTEMS WITH APPLICATION ON DVB-T2

By

Mahmoud Esam Mohamed Ahmed Abdelgelil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE in
ELECTRONICS AND ELECTRICAL COMMUNICATION
ENGINEERING

Under the Supervision of

Hanan Ahmed Kamal

Ahmed Farouk Shalash

Professor
Electronics and Electrical
Communications Engineering Department
Faculty of Engineering, Cairo University

Professor
Electronics and Electrical
Communications Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

STUDY OF CHANNEL ESTIMATION AND FREQUENCY STEP IN OFDM SYSTEMS WITH APPLICATION ON DVB-T2

By

Mahmoud Esam Mohamed Ahmed Abdelgelil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND ELECTRICAL COMMUNICATION ENGINEERING

Approved by the Examining Committee

Hanan Ahmed Kamal Professor, Faculty of Engineering, Cairo University	Principal Advisor
Ahmed Farouk Shalash Professor, Faculty of Engineering, Cairo University	Advisor
Shawky zaki Eid Professor, Faculty of Engineering, Cairo University	Member

El sayed mostafa saad

Member

Professor, Faculty of Engineering, Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014 Engineer's

Mahmoud Esam Mohamed Ahmed Abdelgelil

Name:

Date of Birth: 19/08/1989 **Nationality:** Egyptian

E-mail: Eng.mahmoud.esam@hotmail.com

Phone: 01007823322

Registration 1/10/2011

Date:

Awarding Date: .../.../...

Degree: Master of Science

Department: Electronics and Electrical Communication Engineering

Supervisors:

Prof. Hanan Ahmed Kamal Prof. Ahmed Farouk Shalash

Examiners:

Prof. Hanan Ahmed Kamal Prof. Ahmed Farouk Shalash Prof. Shawky zaki Eid Prof. Elsayed mostafa saad

Title of Thesis: Study of channel estimation and frequency step in OFDM

systems with application on DVB-T2

Key Words: Kalman filter, Automatic Gain Control, Channel estimation,

OFDM

Summary:

This work proposes a new technique for solving the problem of the tracking of the frequency step of the oscillators. This work proposed a change on the Kalman filter where its bandwidth will change non-linearly to enhance the performance of the filter.

In addition to the Frequency jump detection, another proposed technique is used here to enhance the AGC performance. To enhance its performance with low specifications, a non-linear feedback from the channel estimation is used. The ordinary channel estimations and Kalman filter have been used to detect this fast fades.

Acknowledgment

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions. I wish to express my gratitude to my principal adviser, Prof. Hanan Kamal who was helpful and offered invaluable assistance, support and guidance. I am also genuinely blessed to have Prof. Ahmed Shalash as a member of the supervisory committee, for his great efforts and constant care.

Many thanks to my friends and students for their support and help through the duration of this work.

My deepest gratitude to my family. Without their encouragement, I would not have gone this far.

Mahmoud Esam.

Contents

A	cknow	vledgme	ent		V
Al	bstrac	et			vi
Li	st of [Fables			X
Li	st of l	Figures			xvi
Li	st of S	Symbol	s and Abb	previations	xix
1	Intr	oductio	n		1
	1.1	OFDM	1 system.		1
		1.1.1	Problem	s in OFDM System	2
		1.1.2	OFDM s	system Transmitter	3
	1.2	OFDM	I Receiver		9
	1.3	Proble	ms Conce	rned in the thesis	11
		1.3.1	Frequenc	cy step estimation in The carrier oscillator	11
		1.3.2	Boosting	g AGC performace with a Feedback from the	
			Channel	estimation	13
2	Lite	rature (Survey		15
	2.1	Freque	ency step i	n Oscillator	15
		2.1.1	Kalman	Filter Detection	19
2.2 Channel Estimation		ion	22		
		2.2.1	Maximu	m pilot distance	24
			2.2.1.1	Sampling In Frequency Domain	24
			2.2.1.2	Sampling in time direction	25
		2.2.2	Channel	estimation techniques	26
			2.2.2.1	Least square in block type	26
			2.2.2.2	Least square	27

			2.2.2.3	Wiener Filter	29
	2.3	Auton	natic Gain	Control and The abrupt changes in the channel	33
		2.3.1	Tradition	nal AGC	33
		2.3.2	Data Aid	led AGC	34
		2.3.3	Joint AG	C-Equalization	34
		2.3.4	Abrupt c	changed detection using Kalman filter	36
	2.4	Frame	constructi	on in DVB-T2	38
3	Free	quency	Jump Det	tection In Oscillators Using Kalman Filter With	ì
	Non	-Linear	· change		40
	3.1	Overv	iew		40
	3.2	Propos	sed solutio	n	41
	3.3	Modif	ying The H	Bandwidth To a higher value Instantly	44
	3.4	Increa	sing The E	Bandwidth to a Constant One	54
	3.5	Modif	ying The H	Bandwidth With a Gradual Increase	63
	3.6	Modif	ying The E	Sandwidth with High Value then Decrement Grad-	
		ually .			73
	3.7	Compa	arison Bet	ween Different Bandwidth Modifications	81
4 Boosting Automa		ıtomatic (Gain Control Performance With channel estima	-	
•	200	O			
•		Feedba			83
•		Feedba	ıck		
•	tion	Feedba Overv	iew		83
•	tion 4.1	Feedba Overv	i ck iew near chang		83
•	tion 4.1	Feedba Overvi	ick iew near chang Step Det	ge in the AGC	83 83 84 85
•	tion 4.1	Feedba Overvi Non li 4.2.1 4.2.2	iek iew near chang Step Det Step Det	ge in the AGC	83 83 84 85 91
•	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2	iek iew near chang Step Det Step Det ation Resu	ge in the AGC	83 83 84 85 91
•	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2 Simula	iek iew near chang Step Det Step Det ation Resu	ge in the AGC	83 84 85 91 94
	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2 Simula	iew near chang Step Det Step Det ation Resu Using G	ge in the AGC	83 83 84 85 91 94 94
	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2 Simula	iew near chang Step Det Step Det ation Resu Using Ge 4.3.1.1 4.3.1.2	ge in the AGC	83 84 85 91 94 94 100
•	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2 Simula 4.3.1	iew near chang Step Det Step Det ation Resu Using Ge 4.3.1.1 4.3.1.2	ge in the AGC	83 84 85 91 94 94 100
	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2 Simula 4.3.1	iew near chang Step Det Step Det ation Resu Using Ge 4.3.1.1 4.3.1.2 Simulation	ge in the AGC	83 84 85 91 94 94 100 101
	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2 Simula 4.3.1	iew near chang Step Det Step Det ation Resu Using Ge 4.3.1.1 4.3.1.2 Simulation	ge in the AGC	83 84 85 91 94 94 100 101
5	tion 4.1 4.2	Feedba Overvi Non li 4.2.1 4.2.2 Simula 4.3.1	step Det Step Det Step Det ation Resu Using Ge 4.3.1.1 4.3.1.2 Simulation 4.3.2.1	ge in the AGC	83 84 85 91 94 94 100 101

References 134

List of Tables

2.1	number of P2 symbols for each FFT size	38
2.2	Places of different pilots' types in different OFDM symbols	38
2.3	Parameters defining the scattered pilots	39
3.1	The tracking values for the false alarms using the Modified	
	Kalman filter with the first method and different thresholds	47
3.2	The settling time using the first way	47
3.3	The settling time using the second way	56
3.4	The tracked and the real values for the false alarms using the sec-	
	ond way	57
3.5	The settling time using the third way	68
3.6	The tracked and the real values for the false alarms using the third	
	way	68

List of Figures

1.1	Frequency domain signal
1.2	Two transmitted symbol in a single tap channel
1.3	The effect of Multipath channel on the signal
1.4	The Guard impulse insertion between symbols
1.5	Multipath effect in the presence of guard interval
1.6	ICI problem due to multipath effect
1.7	ICI solution due to the insertion of Cyclic Prefix
1.8	Generic OFDM Transmitter system
1.9	8-PSK modulation scheme
1.10	16 QAM modulation scheme
1.11	Comb type pilot pattern
1.12	Block type pilot pattern
1.13	Generic OFDM Receiver
2.1	The Analog Sensor Used to Detect the Frequecy of the Used Oscillator
2.2	The ideal output of the sensor when a frequency jump is happened 17
2.3	Kalman filter response
2.4	The System level For AGC
2.5	Data Aided AGC
2.6	Joint AGC-Equalizer in [1]
3.1	Performance of Bandwidth with Kalman filter gain
3.2	Flow graph for the method of sudden change
3.3	The process covariance changes in the second way
3.4	Output of sudden change method
3.5	False tracking when the threshold is decreased
3.6	False tracking when the threshold is increased
3.7	Output due to sudden bandwidth change with low Q 49

3.8	Flow chart for the constant change of the Bandwigth of the
	Kalman filter
3.9	The process covariance changes in the second way
3.10	Output of Kalman filter with a constant change in bandwidth
3.11	Output of Kalman filter with a constant change in bandwidth with
	low threshold
3.12	Output of Kalman filter with a constant change in bandwidth with
	high threshold
3.13	Output of Kalman filter with a constant change in bandwidth with
	higher changeable bandwidth
3.14	Flow chart for the incremental increase in bandwidth of Kalman
	filter
3.15	Figure to illustrate how the process covariance changes in the sec-
	ond way
3.16	Output of the Kalman filter with incremental Bandwidth change .
3.17	Output of the Kalman filter with incremental Bandwidth change
	with low threshold
3.18	Output of the Kalman filter with incremental Bandwidth change
	with high threshold
3.19	Output of the Kalman filter with incremental Bandwidth change
	with higher change
3.20	Flow chart for the sudden then decremental bandwidth of the
	Kalman filter
3.21	Figure to illustrate how the process covariance changes in the sec-
	ond way
3.22	output of Kalman filter with decremental bandwidth change
3.23	output of Kalman filter with decremental bandwidth change with
	low threshold
3.24	output of Kalman filter with decremental bandwidth change with
	high threshold
4.1	The AGC Topology After Modification by inserting another block
	for the gain factor which is fed-back from the Channel estimation
4.2	AGC and channel estimation feedback
4.3	MSE for different Channel estimation techniques
4.4	Feedback using Kalman filter

4.5	BER curves using the proposed algorithm and without in a single	
	tap channel with least square estimation and BPSK modulation	96
4.6	BER curves using the proposed algorithm and without in a single	
	tap channel with weiner filter estimation and BPSK modulation	96
4.7	BER curves using the proposed algorithm and without in a single	
	tap channel with least square estimation and 8-PSK modulation	97
4.8	BER curves using the proposed algorithm and without in a single	
	tap channel with weiner filter estimation and 8-PSK modulation .	97
4.9	BER curves using the proposed algorithm and without in a Multi	
	taps channel with least square estimation and BPSK modulation .	98
4.10	BER curves using the proposed algorithm and without in a Multi	
	taps channel with weiner filter estimation and BPSK modulation .	98
4.11	BER curves using the proposed algorithm and without in a Multi	
	taps channel with least square estimation and 8-PSK modulation .	99
4.12	BER curves using the proposed algorithm and without in a Multi	
	taps channel with weiner estimation and 8-PSK modulation	99
4.13	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with least square estimation and	
	BPSK modulation	101
4.14	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with different delays with least	
	square estimation and BPSK modulation	102
4.15	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with weiner filter estimation and	
	BPSK modulation	102
4.16	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with different delays with weiner	
	filter estimation and BPSK modulation	103
4.17	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with weiner filter estimation and	
	8-PSK modulation	103
4.18	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with different delays with least	
	square estimation and 8-PSK modulation	104
4.19	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with weiner filter estimation and	
	8-PSK modulation	104

4.20	BER curves using the proposed algorithm and without in a single	
	tap channel using Kalman filter with different delays with weiner	
	filter estimation and 8-PSK modulation	105
4.21	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with least square estimation and	
	BPSK modulation	105
4.22	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with different delays with least	
	square estimation and BPSK modulation	106
4.23	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with wiener filter estimation and	
	BPSK modulation	106
4.24	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with different delays with weiner	
	filter estimation and BPSK modulation	107
4.25	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with least square estimation and	
	8-PSK modulation	107
4.26	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with different delays with least	
	square estimation and 8-PSK modulation	108
4.27	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with weiner filter estimation and	
	8-PSK modulation	108
4.28	BER curves using the proposed algorithm and without in a multi	
	taps channel using Kalman filter with different delays with weiner	
	filter estimation and 8-PSK modulation	109
4.29	BER curves for the proposed method using least square with $1K$	
	OFDM size with PP1 and GI equals to $0.25Ts$ on QPSK system .	111
4.30	BER curves for the proposed method using Wiener filter with $1K$	
	OFDM size with PP1 and GI equals to $0.25Ts$ on QPSK system .	112
4.31	BER curves for the proposed method using least square with $1K$	
	OFDM size with PP1 and GI equals to 0.25Ts on 16 QAM system	112
4.32	BER curves for the proposed method using Wiener filter with $1K$	
	OFDM size with PP1 and GI equals to 0.25Ts on 16 QAM system	113
4.33	BER curves for the proposed method using least square with $1K$	
	OFDM size with PP1 and GI equals to 0.25 <i>Ts</i> on 64 QAM system	113

4.34	BER curves for the proposed method using Wiener filter with $1K$
	OFDM size with PP1 and GI equals to 0.25Ts on 64 QAM system 114
4.35	BER curves for the proposed method using least square with $1K$
	OFDM size with PP2 and GI equals to $0.125Ts$ on QPSK system . 110
4.36	BER curves for the proposed method using Wiener filter with $1K$
	OFDM size with PP2 and GI equals to $0.125Ts$ on QPSK system . 110
4.37	BER curves for the proposed method using least square with $1K$
	OFDM size with PP2 and GI equals to 0.125Ts on 16 QAM system 117
4.38	BER curves for the proposed method using Wiener filter with $1K$
	OFDM size with PP2 and GI equals to 0.125Ts on 16 QAM system 117
4.39	BER curves for the proposed method using least square with $1K$
	OFDM size with PP2 and GI equals to 0.125Ts on 64 QAM system 113
4.40	BER curves for the proposed method using Weiner filter with $1K$
	OFDM size with PP2 and GI equals to 0.125Ts on 64 QAM system 113
4.41	BER curves for the proposed method using least square with $2K$
	OFDM size with PP1 and GI equals to $0.25Ts$ on QPSK system . 120
4.42	BER curves for the proposed method using Wiener filter with $1K$
	OFDM size with PP1 and GI equals to $0.25Ts$ on QPSK system . 120
4.43	BER curves for the proposed method using least square with $2K$
	OFDM size with PP1 and GI equals to 0.25 <i>Ts</i> on 16 QAM system 12
4.44	BER curves for the proposed method using Wiener filter with $2K$
	OFDM size with PP1 and GI equals to 0.25 <i>Ts</i> on 16 QAM system 12
4.45	BER curves for the proposed method using least square with $2K$
	OFDM size with PP1 and GI equals to 0.25 <i>Ts</i> on 64 QAM system 123
4.46	BER curves for the proposed method using Wiener filter with $2K$
	OFDM size with PP1 and GI equals to 0.25 <i>Ts</i> on 64 QAM system 123
4.47	Kalman filter with large bandwidth on PP1, first GI and FFT $1K$
	with QPSK
4.48	Kalman filter with large bandwidth on PP1, first GI and FFT 1K
	with 16QAM
4.49	Kalman filter with large bandwidth on PP1, first GI and FFT 1K
	with 64QAM
4.50	Difference between different Kalman filters with different band-
	widths on PP1, first GI and FFT $1K$ with QPSK
4.51	Difference between different Kalman filters with different band-
	widths on PP1, first GI and FFT 1K with 16 QAM 120

4.52	Difference between different Kalman filters with different band-	
	widths on PP1, first GI and FFT $1K$ with 64 QAM	126
4.53	Kalman filter with large bandwidth on PP2, second GI and FFT	
	1K with QPSK	128
4.54	Kalman filter with large bandwidth on PP2, second GI and FFT	
	1 <i>K</i> with 16QAM	128
4.55	Kalman filter with large bandwidth on PP2, second GI and FFT	
	1 <i>K</i> with 64QAM	129
4.56	Difference between different Kalman filters with different band-	
	widths on PP2, second GI and FFT $1K$ with QPSK	129
4.57	Difference between different Kalman filters with different band-	
	widths on PP2, second GI and FFT 1 <i>K</i> with 16 QAM	130
4.58	Difference between different Kalman filters with different band-	
	widths on PP2, second GI and FFT 1K with 64 QAM	130