Study of Malaria Disease In Northern Darfur Area

Thesis BY

Mohammad Emam Mohammad (M.B.B.Ch)

In Partial Fulfillment of the requirements for the master Degree

In Tropical Medicine Supervised by

Prof. Dr. Amany Ahmed Ibrahim

Professor of Tropical Medicine Faculty of Medicine Ain Shams University

Dr.MostafaHamed Abdel Aleem

Assistant Professor of Tropical Medicine Faculty of Medicine Ain Shams University

Dr. Heba Mohammed Mohammed Abdella

Assistant Professor of Tropical Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2014

<u>Acknowledgement</u>

To Allah the all-knowing, whose knowledge is beyond all the knowledge and to Him I relate any success in my life.

I am honored to have **Prof. Dr. Amany Ahmad Ibrahim** Professor of Tropical
Medicine, faculty of medicineAin Shams
University, as a supervisor of this work. I
am so grateful and most appreciative to her
efforts.

I am deeply thankful to **Dr**. **MostafaHamed**Assistant Professor of Tropical Medicine, faculty of medicineAin Shams University, for his valuable and helpful support.

I would like to thank **Dr. Heba Mohammed**

MohammedAbdellaAssistant Professor of tropical medicine, Faculty of Medicine,

Ain Shams University, not only for her great help and effort to make this work possible, but also for her patience, valuable advices and kind co-operation.

Most notably, I am deeply thankful and grateful for the love of my small family; my wife my daughter and my son, who have always been unwavering in their support. Even on my down days, they always make me feel as though I deserve the Nobel Prize.

List of Contents

Title	Page
Acknowledgement	I-II
List of contents	III- IV
List of Figures	V - VI
List of tables	VII- VIII
List of abbreviations	IX- III
Introduction	1
Aim of the study	2
Review of literature:	
Chapter One: History, Agent and Vector of malaria	3-5
Chapter Two: Life cycle and genomics of plasmodium	6-13
Chapter Three: Clinical picture and pathology of malaria	14-24
Chapter Four: Laboratory diagnosis of malaria	25-31

Chapter Five: Treatment and prevention	32-66
Chapter six:malaria in Africa and Sudan	67-74
Patients and Methods	75-80
Results	81-104
Discussion	105-112
Conclusion & Recommendation	113-114
Summary	115-116
References	117-129
Arabic Summary	•

List of figures

Figure No	Title	PageNo.
Figure 1	Map of Darfur	76
Figure 2 ^a	Map of malaria endemicty	77
	in Darfur	
Figure2 ^b	map of internally displaced	77
	persons	
Figure 3	Demographic data of the	82
	studied patients	
Figure 3 ^a	age category	82
Figure 3 ^b	sex	82
Figure 4	Fever analysis	84
Figure 4 ^a	Onset	84
Figure 4 ^b	Course(pattern of fever)	84
Figure 4 ^c	grades of fever	84
Figure 5	presenting symptoms of	86-87
	malaria	
Figure 5 ^a	General	86
Figure 5 ^b	GIT	86
Figure 5 ^c	CVS	87
Figure 5 ^d	Urinary	87
Figure 6	conscious level of the	89
	studied patients	
Figure 7	Neuropsychiatric	89
	symptoms	
Figure 8	past history	90
Figure 9	Clinical examination of the	92-93
	studied patients	
Figure 9 ^a	General examination	92
Figure 9 ^b	Neurological examination	92
Figure 9 ^c	chest examinatiom	93

Figure 9 ^d	Abdomen examination	93
Figure10	Rapid diagnostic test	95
Figure 11	Complete blood count	95-96
Figure 11 ^a	HB%	95
Figure 11 ^b	WBC	96
Figure 11 ^c	Platelet count	96
Figure 12	Liver and kidney profile	96
Figure 13	Abdominal Ultra sound of the studied patients	98
Figure 13 ^a	Liver ultrasound	98
Figure 13 ^b	Spleen and kidney ultrasound	98
Figure 14	Type of malaria treatment	100
Figure 15	treatment of other manifestation	101

List of Tables

Table No.	Title	PageNo.
Table (1)	Differences between P. falciparum and its life cycle and the other parasites that cause human malaria	9
Table (2)	Common Erythrocyte Variants That Affect Resistance to Malaria	11
Table (3)	Host Molecules That Mediate Cytoadherence by P. falciparum— Infected Erythrocytes and That Have Been Reported to Show Association with Resistance or Susceptibility to Malaria	12
Table (4)	Immune genes reported to be associated with different malaria phenotypes	13
Table (5)	Effects of some commonly used antimalarial drugs on the infectivity of P . falciparum to the mosquito	53
Table(6)	Pesticide Properties and Health Effects of Pesticides	61
Table(7)	choice of stand-by emergency treatment according torecommended chemoprophylactic regimen	65
Table(8)	Use of antimalarial drugs for prophylaxis in traveler	66
Table (9)	Comparison of malaria cases and attack rate in 2004 and 2005	74
Table (10)	Demographic data of the studied	81

	patients	
Table (11)	fever analysis	83
Table (12)	presenting symptoms	85
Table (13)	Neuropsychiatric symptoms	88
Table(14)	past history of the studied patients	90
Table(15)	clinical examination of the studied patients	91
Table(16)	rapid diagnostic test for plasmodium falciparum malaria	94
Table(17)	laboratory investigation of the studied patients	94
Table(18)	radiological investigation	97
Table(19)	type of malaria treatment given	99
Table(20)	treatment of other manifestation of malaria	101
Table (21)	fever clearance	103
Table (22)	parasite clearance and improvement of anemia in the Egyptian patients	103

List of Abbreviations

Title	Abbreviation
ACT	Artemisine combination therapy
AQ	Amodiaquine
AS	Artsunate
ATSDR	Agency for toxic substances and disease
	registry
В	Bacillius
BCS	Blantyre coma scale
Bti	Bacilliusthuringiensisisraelensis
CFR	Case fatality rate
CNS	Central nervous system
CQ	Chloroquine
DPL	Duffy binding ligand
EPA	Environmental protection agency
FDC	Fixed dose combination
G6PD	Glucose 6 phosphate dehydogenase
GSC	Galscow coma scale
GUP	General use pesticide
GIT	Gartrointestinal tract
HRP	Histidine rich protein
IARC	International agency for research cancer
IDP	Internally displaced persons
IFNG	Interferon gama
IL	Interleukin
IPT	Intermittent preventive treatment
IRS	Indoor residual spraying
ITN	Insecticide treated net
ITPS	Insecticide treated plastic sheeting
IVM	Integrated vector management
MBL	Mannose binding protein

MRDD	Malaria rapid diagnostic devices
P	Plasmodium
P. falciparum	Plasmodium falciparum
PfEMP1	Plasmodium falciparum erythrocyte membrane
P. knowlesi	Plasmodium knowlesi
P. malaria	Plasmodium malaria
P. ovale	Plasmodium ovale
P. vivax	Plasmodium vivax
P LDH	Parasite lactate dehydrogenase
PCR	Polymerase chain reaction
PEA	Programmatic environmental assessment
Pf ATPase	Plasmodium falciparum adenosine tri phosphatase
QA	Quality assurance
RBM	Roll back malaria
RDT	Rapid diagnostic test
RUP	Restricted use pesticide
SP	Sulphadoxine + pyrimethamine
TCA	Tricarboxylic acid
TNF	Tumor necrosis factor
TRAP	Thrombospondin related anonymous protein
ULV	Ultra low volume
USAID	United states agency for international development
WHO	World health organization

INTRODUCTION

Malaria is an acute systemic illness caused by infection with *Plasmodium*, all of which are transmitted to humans by female *Anopheles* species mosquitoes. There are an estimated 300 to 800 million clinical cases of malaria and 1 to 3 million deaths due to malaria annually in the tropics and subtropics (*Breman et al.*, 2001).

The majority of the infections and deaths are caused by P.falciparuminfection of children in sub-Saharan Africa. In fact, P. falciparum is responsible for more deaths in children less than 5 years of age than any other single infectious agent(*Malaneyand Sachs*, 2002).

AIM OF THE WORK

The aim of this work is to study malaria disease among people who live in El Fasher town (the capital of northern state in Darfur).

HISTORY

Malaria was linked with poisonous vapours of swamps or stagnant water on the ground since time immemorial. The term malaria from the Italian mala "bad" and aria "air" was used by the Italians to describe the cause of intermittent fevers associated with exposure to marsh air. The word was introduced to English by Horace Walpole, who wrote in 1740 about a "horrid thing called mal'aria, which comes to Rome every summer and kills people." The term malaria, without the apostrophe, evolved into the name of the disease only in the 20th century (*European alliance against malaria working for malaria free world*).

History of Malaria Parasite and Its Global Spread

It is believed that most, if not all, of today's populations of human malaria may have had their origin in West Africa and West and Central Africa. From its origin in the West and Central Africa, the parasites spread to other areas through the journey of man, following the humanmigrations.

Malaria was known in China form almost 5000 years. Sumerian and Egyptian texts dating from 3,500 to 4,000 years agomention about fevers and splenomegaly suggestive of malaria. Malariareached the shores of the Mediterranean Sea between 2,500 and 2,000 years ago andnorthern Europe probably mainly between 1,000 and 500 years ago (*European alliance against malaria working for malaria free world*).

AGENT

Malaria is caused by protozoa of the genus Plasmodium. Of the over 200 known species of Plasmodium, at least 10 species infect humans. Other species infect animals, including monkeys, rodents, birds, andreptiles (*Chavatte et al.*, 2007). Only five species areknown to consistently infect humans: P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi, a simian malaria parasite, has intermittently been reported to cause human disease (*Singh et al.*, 2004).

Vector

(Wikipedia, the free encyclopedia)

Anopheles is a genus of mosquito. There are approximately 460 recognized species while over 100 can transmit human malaria, only 30-40 commonly transmit parasites of the genus Plasmodium, which cause malaria in humans in endemic areas. Anopheles gambiae is one of the best known. Like all mosquitoes, anophelines go through four stages in their life cycle. The first three stages are aquatic and last 5–14 days, depending on the species and the ambient temperature. The adult stage is when the female Anopheles mosquito acts as malariavector. The adult females can live up to a month but most probably do not live more than 1–2 weeks in nature.

Life stages

• **Eggs:** Adult females lay 50-200 eggs per oviposition. The eggs are ~ (0.5 x 0.2 mm). Eggs are laid singly and directly on water. They have floats on eitherside. Eggs are not resistant to drying and hatch within 2–