

Recent techniques of MRI in detection of pancreatic neoplasm

Essay submitted for partial fulfillment of Master Degree in diagnostic radiology

By

Michel Adel Mounir Gad

M.B., B.Ch

Ain Shams University

Supervised By

Prof. Dr. Suzan Bahig Ali

Professor of radiodiagnosis

Faculty of medicine

Ain Shams University

Dr. Remon Zaher Elia

Lecturer of radiodiagnosis

Faculty of medicine

Ain Shams University

Faculty of Medicine
Ain Shams University
2014

التقنيات الحديثة للرنين المغناطيسى فى تشخيص أورام التقنيات الحديثة للرنين المغناطيسي

رسالة

توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمة من الطبيب / ميشيل عادل منير بكالوريوس الطب و الجراحة جامعة عين شمس

تحت إشراف

أ. د. سوزان بهیج علی

أستاذ الأشعة التشخيصية كلية الطب جامعة عين شمس

د. ريمون زاهر ايليا

مدرس الأشعة التشخيصية كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس 2014

Recent techniques of MRI in detection of pancreatic neoplasm

	CONTENTS	PAGE
•	Acknowledgement	2
•	List of abbreviations, figures and tables	3
•	Introduction and Aim of work	9
•	Chapter 1: Normal anatomy of the pancreas.	12
•	Chapter 2: Pathology of pancreatic neoplasm.	31
•	Chapter 3: Technique.	48
•	Chapter 4: MRI appearance of pancreatic neoplasm.	74
•	Summary and conclusion	101
•	References	105
•	Arabic summary	112

ACKNOWLEDGMENTS

I wish to express my great indebtedness and deep gratitude to **Dr. Suzan Bahig Ali,** Professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University for accepting the idea of this work, her kind assistance and efforts, which helped me in accomplishing this essay.

I also extend my thanks and appreciation to **Dr. Remon Zaher Elia**, Lecturer of Radiology, Faculty of Medicine, Ain Shams University for his invaluable guidance and great help in supervising this work. No words can express my feelings, respect and gratitude to him as regards his continuous encouragement and constructive criticism given to me at every stage of this work.

Words cannot express my feelings of gratitude towards my father, my mother, my brother, my future wife and all my friends for their unconditional love and support during the preparation of this work.

LIST OF ABBREVIATIONS

ADC
AST
AST
AST
AST
Balanced Fast Field Echo

CBD common bile duct

CHESS chemical shift selection

cho Choline

CNR contrast-to-noise ratio

cr Creatine

CT Computed Tomography

DCE Dynamic contrast enhanced

DWI Diffusion Weighted Images

eGFR estimated glomerular filtration rate

ERCP Endoscopic retrograde cholangiopancreatography

FFE fast-field echo

FRFSE fast recovery fast spin-echo **FWHM** Full- wave at half maximum

GE Gradient Echo
GRE Gradient Echo

HASTE Half Fourier Acquired Single Shot Turbo Spin Echo

IPMN Intraductal Papillary Mucinous Neoplasm

IR Inversion recovery

LAVA liver acquisition with volume acceleration

LDH lactic dehydrogenase

MCN Mucinous Cystic Neoplasm

MDCT Multi-detector computed tomography

MEN Multiple endocrine neoplasmMIP Maximum Intensity Projection

MPD main pancreatic duct

MPR Multiplanar reconstruction

MRA Magnetic resonance angiogram

MRCP Magnetic Resonance cholangiopancreatography

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

MVD microvascular densityNET Neuroendocrine tumors

OC one compartement

PACE prospective acquisition correction encoding PTC percutaneous transhepatic cholangiogram

SAR Specefic absorption rate specific absorption rate

S-MRCP Secretin-enhanced MR cholangiopancreatography

SNR Signal to noise ratio

SPACE sampling perfection with application optimized contrasts using

different flip-angle evolutions

SPAIR spectral adiabatic inversion recovery

SSFP Steady State Free Precession
SSFSE Single Shot Fast Spin Echo
SSh Single Shot Short Half Fourier
STIR Short time inversion recovery

T Tesla

TC two compartements

TE Time of echo

THRIVE T1-weighted high-resolution isotropic volume examination

TR Time or repetition

True FISP True Fast Imaging With Steady State Free Precession

TSE turbo spin-echo

VIBE volume interpolated breath-hold F-GRE

WBC white blood count,WIs weighted images

LIST OF FIGUERS

Figure 1	Relations of the pancreas	13
Figure 2	Venous drainage of the pancreas	14
Figure 3	Variations in the ductal anatomy of the pancreas	16
Figure 4	Posterior relations of the pancreas.	19
Figure 5	Arterial supply of the pancreas.	23
Figure 6	Normal high signal intensity of the pancreatic	26
	parenchyma on this T1-weighted image.	
Figure 7	post contrast T1W fat-saturated images of the pancreas	27
Figure 8	MR imaging shows the usual low signal intensity on	28
	this T2-weighted image	
Figure 9	Normal coronal A) axial B) MRCP renderings and	30
	corresponding diagrams (C–D).	
Figure 10	Histological features of the tumor (adenocarcinoma)	34
Figure 11	Serous cystadenoma	38
Figure 12	Pancreatic mucinous cystadenoma	39
Figure 13	Intraductal papillary mucinous neoplasm.	40
Figure 14	Gastrinoma in a patient with the Zollinger-Ellison	44
	syndrome	
Figure 15	Intraductal papillary mucinous neoplasm, status post-	52
	Whipple operation. (A) Coronal MRCP image (B) Same	
	patient after ingestion of negative oral contrast.	
Figure 16	Acute pancreatitis (A) Axial T2weighted image. (B)	53
	Axial T1-weighted opposed-phase image	
Figure 17	(A) Axial CT image. In-phase (B) and opposed-phase	54
	(C) images of 3-dimensional T1-weighted fat-only	
	image (D).	
Figure 18	(A) Axial SSFSE T2-weighted image. (B) Coronal	56
	MRCP image on the same study.	
Figure 19	Navigator monitoring of respiratory motion.	58
Figure 20	Two-dimensional MRCP image in a 55-year-old man	59

	with right upper-quadrant pain.	
Figure 21	74-year-old woman with cystic pancreatic lesions.	60
Figure 22	47-year-old man with abdominal pain evaluated with	62
	MRCP.	
Figure 23	48-year-old woman with chronic pancreatitis. (A)	63
	Conventional MRCP (B) Postsecretin MRCP (C)	
	ERCP.	
Figure 24	52-year-old woman with suspected chronic pancreatitis.	64
Figure 25	(A) Presecretin MRCP (B) 8 minutes after intravenous	65
	secretin injection.	
Figure 26	MRS of normal pancreas.	69
Figure 27	The location image of Fig. 26 in T1WI.	70
Figure 28	Stage IA pancreatic cancer.	74
Figure 29	Stage IB pancreatic head cancer.	76
Figure 30	T4 pancreatic cancer, signs of non-resectability.	78
Figure 31	Serous cystadenoma.	79
Figure 32	Mucinous cystic neoplasms.	80
Figure 33	Cholangio-magnetic resonance image.	81
Figure 34	29-year-old woman with pancreatoblastoma.	82
Figure 35	Small insulinomas(a). After contrast administration,	83
	ring-like enhancement is characteristic (b)	
Figure 36	Solid pseudopapillary tumor.	86
Figure 37	Abdominal MRI image, axial post contrast T1 with fat	87
	suppression.	
Figure 38	Metastases to the pancreas.	88
Figure 39	Coronal thick slab MRCP shows the classical 'double	89
	duct' sign in a patient with carcinoma at the head of	
	pancreas	
Figure 40	Coronal MIP reformat shows intrahepatic bile duct	90
	dilatation and a grossly dilated CBD	
Figure 41	Coronal MIP reformat shows a small multi-septated	91
	cystic lesion (arrow) arising in the uncinate process of	

LIST OF TABLES

Table 1	Classification of pancreatic tumors.	31
Table 2	TNM categories in pancreatic cancer.	35
Table 3	Differential of cystic pancreatic lesions.	36
Table 4	Parameters of pancreatic imaging on 1.5 T MRI	50
	imaging scanners	
Table 5	Parameters of pancreatic imaging on 3.0 T MRI	51
	imaging scanners.	
Table 6	T1-weighted Turbo Field-Echo DCE MR Imaging	72
	Parameters	
Table 7	SI Curve Pattern, DCE MR Quantitative	101
	Parameters, and Histopathologic Parameters	

INTRODUCTION

The pancreas is a tongue shaped organ, approximately 12 -15 cm in length, that lies within the anterior pararenal compartment of the retroperitoneum. (*Brant et al*, 2012)

Pancreatic cancer is the fifth leading cause of cancer related death in both men and women and is responsible for 5% of all cancer-related deaths in the United States. (*Yoon et al, 2010*)

The most recent classification divides pancreatic disorders into primary tumors including epithelial endocrine and exocrine as well as non-epithelial neoplasms, secondary neoplasms, and tumor-like conditions (*Kloppel et al*, 2004).

Compared with CT, MRI has the advantage of being able to detect cystic changes within pancreatic masses and to provide more accurate morphological detail on these changes. (*Yoon et al, 2010*).

MRI plays a triple role in the evaluation of the pancreas: Diagnosis, staging, and detection of complications. The role of MRI has increased, especially in imaging patients with suspected pancreatic neoplasms (*Olivia et al,2006*).

To evaluate pancreatic lesions accurately, the use of multiple pulse sequences that provide complementary information is required, and, in general, a combination of T1-weighted (T1W) and T2-weighted (T2W) sequences is obtained. (*Olivia et al,2006*).

The intravenous (IV) administration of an extracellular contrast agent (gadolinium chelate) is a useful adjunct in the MRI examination of the pancreas. It can help differentiate hypervascular pancreatic masses that may simulate cystic lesions on noncontrast scans. (*Olivia et al,2006*).

MR Spectroscopy has been used as a tool in the differentiation of pancreatic cancer from chronic focal pancreatitis and in the detection of hepatopancreaticobiliary cancer. Pancreatic cancer and chronic focal pancreatitis are difficult to discriminate initially because of their similar clinical and radiologic features at presentation. (*Shah et al*, 2006).

Diffusion weighted (DW) imaging allows detection of pancreatic adenocarcinomas with high sensitivity and specificity. Previous studies have found that pancreatic adenocarcinoma appears hyperintense compared with the rest of the gland on DW images, and DW imaging might have potential to become the imaging modality of choice for screening patients at high risk for pancreatic adenocarcinoma. (*Fukukura et al, 2012*).

In oncologic studies, dynamic contrast agent—enhanced MR imaging may be performed to provide information concerning tumor microvasculature, and it has been used as a biomarker for tumor response to treatment. (*Bali et al*, 2011)

AIM OF WORK

The aim of this study is to highlight the role of the new techniques of MRI in evaluation pancreatic neoplasm.

ANATOMY OF THE PANCREAS

The pancreas is a tongue shaped organ, approximately 12 -15 cm in length that lies within the anterior pararenal compartment of the retroperitoneum. It is composed of four parts (head, body, neck and tail). (*Brant et al.*, 2012)

PARTS

Head:

The head of the pancreas lies to the right of the midline, anterior and to the right side of the vertebral column, within the curve of the duodenum. Superiorly it lies adjacent to the first part of the duodenum. The inferior border lies superior to the third part of the duodenum and is continuous with the uncinate process. Close to the midline, the head is continuous with the neck. The boundary between head and neck is often marked anteriorly by a groove for the gastroduodenal artery and posteriorly by a similar but deeper deep groove that contains the union of the superior mesenteric and splenic veins as they form the portal vein. (*Standering et al.*, 2008)

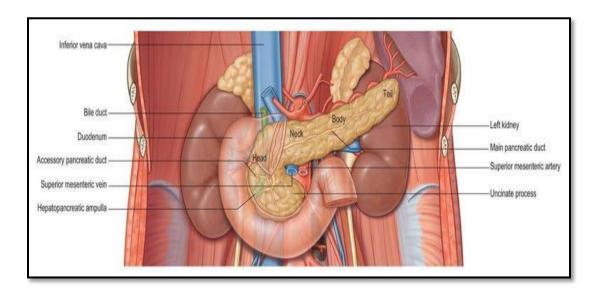


Fig.1 relations of the pancreas (Standering et al., 2008)

Neck:

The neck of the pancreas is approximately 2 cm wide and links the head and body. It is often the most anterior portion of the gland and is defined as the portion of the pancreas that lies anterior to the portal vein, which is closely related to the upper posterior surface (see **Fig. 2**). The lower part of the neck lies anterior to the superior mesenteric vein just before the formation of the portal vein. (*Standering et al.*, 2008)