PRESEPSIN AS A NEW MARKER IN MANAGEMENT OF SEPSIS

Essay

Submitted for partial fulfillment of master degree in Intensive Care Medicine

By

Asmaa Magdy Ibrahim Shalan

M.B.B. Ch (2008)

Faculty of Medicine

Supervised by

Prof. Dr. Fekry Fouad Ahmed El-Bokl

Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Prof. Dr. Waleed abdel-Magied El-Taher

Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr. Simon Halim Aramanios

Lecturer of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

ACKNOWLEDGMENT

First and forever thanks for My God, the most merciful and the most compassionate, without his help nothing could be done.

I would like to express my gratitude to **Prof. Dr. Fekry Fouad**Ahmed El-Bokl Professor of Anesthesia and Intensive Care,

Faculty of Medicine – Ain Shams University for giving me the honor of working under his supervision and providing me a lot of encouragement and support.

I can never describe my feelings towards **Dr. Waleed Abdel- Magied El-Taher** Professor of Anesthesia and Intensive Care,
Faculty of Medicine – Ain Shams University because his kindness; I
owe a heavy debt of gratitude for his fruitful remarks and endless care.

I am greatly indebted to **Dr. Simon Halim Aramanios**Lecturer of Anesthesia and Intensive Care, Faculty of Medicine – Ain Shams University for his valuable guidance and support. With great patietience, he sustained and directed me throughout the whole study. I much acknowledge his efforts and thank him for being caring meticulous.

Finally my great appreciation is extended to my family and my friends for their great support, encouragement and forbearance during my work. In addition, a special thank from the bottom of my heart to my dear husband **Dr. Ahmed Fawzy** for his great support.

Dr. Asmaa Magdy Shalan

List of abbreviations	Ι
List of tables	V
List of figures	VI
Introduction	1
Aim of the work	4
Review of literature	
• Chapter 1: Pathophysiology of Sepsis	5
• Chapter 2: Biomarkers in Sepsis	35
• Chapter 3: Diagnostic & Prognostic Role of Presepsin in Sepsis	62
• Chapter 4: Management of Sepsis	79
Summary	107
Conclusion	110
References	
Arabic Summary	

Abbreviation	Meaning
AA	Amino acids
ACCESS	AC ontrolled Comparison of Eritoran Tetrasodium and Placebo in Patients with Severe Sepsis
ACCP	American College of Chest Physicians
ACTH	adrenocorticotropic hormone
AIDS	acquired immunodeficiency syndrome
APACHE	Acute physiology and chronic health evaluation
APC	Activated Protein-C
aPTT	activated Partial thromboplastin time
ARDS	Acute respiratory distress syndrome
ATP	adenosine triphoaphate
ATS	American Thoracic Society
BBB	Blood Brain Barrier
C	Complement fragment
C5a	Complement fragment 5a
C5aR	Complement fragment 5a receptor
CARS	Compensatory anti-inflammatory response syndrome
CD	Cluster of differentiation
CLEIA	chemiluminescent enzyme immunoassay
CLP	Cecal ligation and puncture
CNS	Central nervous system
CRH	Corticotropin-releasing hormone
CRP	C-reactive protein
CSF	Cerebrospinal fluid
CTLA-4	Cytotoxic T lymphocyte-associated antigen-4
CVC	Central venous catheter
CVP	Central venous pressure
CVVH	Continuous venovenous hemofiltration
DAMPs	Damage-associated molecular patterns
DIC	Disseminated intravascular coagulation
DM	Diabetes mellitus
DNA	deoxyribonucleic acid

Abbreviation	Meaning
MD2	Co-protein of TLR-4
MDL-1	Myeloid DAP12-associating lectin
MHC	Major histocompatibility complex
MIF	Macrophage migration inhibition factor
Mo	Monocytes
MODS	Multiple organ dysfunction syndromes
MRSA	Methicillin-resistant staph aureus
NAD	Nicotinamide adenine dinucleotide
NGAL	Neutrophil gelatinase-associated lipocalin
NO	Nitric oxide
NOD	Nucleotide-oligomerization domain
PACs	Pulmonary artery catheters
PAMPs	Pathogen-associated molecular patterns
PaO ₂	arterial oxygen tension
PAOP	Pulmonary artery occlusion pressure
PARs	Protease-activated receptors
PASS	Procalcitonin and Survival Study
PBFC	Polymyxin B fiber column
PCO_2	carbon dioxide partial pressure (tension)
PCR	polymerase chain reaction
PCT	Procalcitonin
PD	Peritoneal dialysis
PD-1	Programmed death-1
PG	Polyglycan
PGN	Peptidoglycan.
PHi	Gastric intramucosal PH
PLTP	Proteins like phospholipid transfer protein
PMNs	Polymorphonuclear leukocytes
PNH	Paroxysmal nocturnal haemoglobinuria
PRRs	Pattern recognition receptors
PTX3	Pentraxin 3
RAGE	Receptor for advanced glycation end-products
rhAPC	Recombinant human activated protein C

Abbreviation	Meaning
RIG-I	Retinoic-acid-inducible gene I
RNA	Ribonucleic acid
SAFE	Saline versus albumin fluid evaluation
SBP	Systolic blood pressure
SCCM	Society of Critical Care Medicine
sCD	Soluble Cluster of differentiation
sCD14-ST	soluble CD14 subtype (Presepsin)
ScvO ₂	Central venous oxyhemoglobin saturation
SD	Standard deviation
SIRS	Systemic inflammatory response syndrome
SIS	Surgical Infection Society
SNP	Single nucleotide polymorphism
SOFA	Sequential Organ Failure Assessment
SSC	Surviving Sepsis Campaign
SvO_2	Mixed venous oxyhemoglobin saturation
TCR	T-cell receptor
TGF	Transforming growth factor
TLRs	Toll-like receptors
TNF	Tumor necrosis factor alpha
TREM	Triggering receptor expressed on myeloid cell
US	United States
VCAM-1	Vascular cell adhesion molecule-1
VISEP	Volume Substitution and Insulin Therapy in Severe Sepsis
VLDL	Very-low density lipoprotein
WBC	White blood cell


LIST OF TABLES

Table number	Title	Page number
1	Diagnostic criteria of sepsis	7
2	Biologic effects of proinflammatory cytokines such as TNF and IL-1	19
3	Characteristics of ideal sepsis biomarkers	35
4	Non infectious mimics of sepsis	79
5	Source control in sepsis	80
6	Parameters during treatment of sepsis	90
7	Evaluation of sources of sepsis	92

LIST OF FIGURES

Figure number	Title	Page number
1	Trends in US. hospital stays with septicemia, 1993 - 2009	11
2	Population – adjusted incidence of sepsis, according to race, 1979 – 2000	12
3	Number of cases of sepsis in the United States, according to causative organism, $1979 - 2000$	13
4	Overall in-hospital mortality rate among patients hospitalized for sepsis, 1979-2000 in United States	14
5	release of proinflammatory mediators in response to an infection	20
6	Impact of sepsis on microcirculation	30
7	Mechanisms of sepsis associated encephalopathy	33
8	Role of pro-inflammatory cytokines in sepsis	36
9	Biomarkers of activated neutrophils and monocytes in sepsis	45
10	Biomarkers of the immunosuppressive phase of sepsis	51
11	Mechanism of presepsin secretion	63
12	Binding of bacterial ligands to CD14 and sCD14	71
13	role of mCD14 and sCD14 in endotoxic response in vitro	72
14	Diagnostic power of presepsin in sepsis	74

Introduction

Sepsis is a clinical state, which is complicated with severe infection and characterized with systemic inflammation and disseminated tissue damage, which needs explanation of SIRS condition primarily to be fully understood. SIRS is a clinical syndrome that result from dysregulated inflammatory response to non infectious insult, such as autoimmune disorders, vasculitis, pancreatitis, burns or surgery, which requires two or more features of the following abnormalities to be present:

- * Body temperature > 38.5 or < 36 $^{\circ}$ C.
- * Heart rate > 90 beat/ min.
- * Respiratory rate > 20 breaths / min or PaCO₂ < 32 mmHg.
- * Altered leukocyte count > 12000 or < 4000 / mm³ (Annane and Cavaillon, 2005).

A consensus conference in 1991 defined sepsis as the combination of an infection with two or more features of SIRS, along with either a culture proven or visually identified infection. An update to that original definition, published in 2003, expand the criteria to include other signs and symptoms commonly seen in critical illness (Levy et al, 2003). Septic shock is defined as sepsis associated with hypotension, despite adequate fluid resuscitation (Dellinger et al, 2008).

Sepsis and septic shock are some of the most common conditions handled in the intensive care areas, and despite modern antibiotic therapy in conjugation with cardiovascular and respiratory support,

mortality remains between 30 and 60% (**Dombrovskiy et al, 2007**). According to the last guidelines, published in 2013 by the surviving sepsis campaign (SSC), early recognition of these conditions with speed and appropriateness of therapy in the initial hours is likely to influence outcome of septic patients (**Dellinger et al, 2013**).

Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Biomarkers can have an important role in the presence, absence or severity of sepsis, and can differentiate bacterial from viral and fungal infection, and systemic sepsis from local infection. Other potential uses of biomarkers include roles in prognosis, antibiotic therapy, evaluating response to therapy and recovery from sepsis, predicting sepsis complications and development of organ dysfunction. However, the exact role of biomarkers in the management of septic patients remains undefined (Marshall and Reinhart, 2009).

Actually, there are some findings about diagnostic biomarkers but none has sufficient capability to diagnose all etiological kinds of sepsis or specificity- sensitivity to be routinely employed in clinical practice. Currently, procalcitonin (PCT) and C-reactive protein (CRP) have been most widely used in clinical practice. CRP has been used for many years but its specificity has been challenged. PCT has been proposed as a more specific and better prognostic marker than CRP, although its value has also been challenged (Nakamura et al, 2009). It remains difficult to differentiate sepsis from other non-infectious causes of SIRS and studies are being continued to define a reliable biomarker.

In these days, a new biomarker, presepsin or sCD14-ST, is proposed in the field of sepsis. It was firstly defined in 2005 and has been a new

important marker for diagnosis and prognosis of sepsis in recent years (Yaegashi et al, 2005). CD14 (cluster of differentiation) is a glycoprotein express on the surface membrane of monocytes/ macrophages and service as receptor for complexes a lipopolysaccharides (LPS) and LPS binding protein (LPP). Activating proinflammatory signaling cascade on contact with infectious agents, CD14 has a role as a pattern recognition molecule in the innate immune response against microorganisms. During inflammation plasma protease activity generates soluble CD14 (sCD14) fragments: one of them called sCD14 subtype (sCD14-ST) or presepsin (Shirakawa et al, 2011).

Presepsin is normally present in very low concentration in the serum of healthy individuals and has been shown to be increased in response to bacterial infections according to the severity of disease. Preliminary studies suggest that the level of presepsin significantly differs in healthy individuals, in patients with local infection, SIRS, sepsis or severe sepsis. It also sought to be more specific and sensitive biomarker for the diagnosis of sepsis compared to other biomarkers and its level in blood increases faster than them (**Endo et al, 2012**).

Aim of the Work

