Evaluation of Serum Adiponectin Level in Patients with HCV Induced Chronic Liver Disease with and without Interferon Therapy

Thesis

Submitted for partial fulfillment of the master degree of Internal Medicine

By:

Shimaa Abdelaleem Mohamed Soliman M. B., B.Ch

Supervised by

Prof. Dr. Mohsen Moustafa Maher

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Tarek Mohamed Yousef

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Shereen Abou Baker Abdel-Rahman

Lecturer of Internal Medicine Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Mohsen Moustasfa Maher**, Professor of Internal Medicn, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Tarek Mohamed Yousef** Assistant Professor of Internal Medicn, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I feel deeply thankful to **Dr. Shereen Abou Baker Abdel-Rahman**, Lecturer of Internal Medicn faculty of medicine, Ain Shams University, for her continuous unlimited help, unlimited patience and close supervision throughout the entire work.

Last but not least, I dedicate this work to my family, especially my father and mother then my husband and my children whom without their sincere emotional support, pushing me forward this work would not have ever been completed...

Shimaa Abdelaleem Mohamed Soliman

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	V
Introduction and Aim of the Work	1
Review of Literature	
Hepatitis C Virus Infection	4
Adiponectin	72
Relation of adiponectin to HCV infection	91
Patients and Methods	101
Results	110
Discussion	128
Summary	134
Conclusion	136
Recommendations	137
References	138
Arabic Summary	

List of Abbreviations

aa : Amino acid

ACC : Acyl coenzyme-A carboxylase

ADIPO-R1: adiponectin receptor one ADIPO-R2: Adiponectin receptor two AMP-K: AMP-activated kinase AMPK: AMP-activated kinase

ARFP : Alternate reading fram protein ASGP-R : Asialoglycoprotein receptor

BOC : Bociprevir

DAAs : Direct-acting antiviral agents

EDHS : Egyptian Demographic Health Survey

EGP : Endogenous glucose production

EIA : Enzyme immunoassay EVR : Early virological response

FA : Fatty acid FFA : Free fatty acid G : HCV genotype GBV-B : GB Virus B' GBV-C : GB virus C

HAI : Histological activity index

HCV : Hepatitis c virus

HOMA2-IR: Homeostaisis model assessment of insulin

resistance

HSC : Hepatic stellate cell HSF : High-saturated fat

HSPG : Heparan sulfate proteoglycans

IDU : intravenous drug use

INF : Interferon

IR : Insulin resistance

IRES : Internal ripsome entery site

Kda : Kilo Dalton

LDL-R : Low density lipoprotein receptor

LEL : Large extracellular loop

List of Abbreviations (Cont.)

LPS : Lipopoysaccharide

NAFLD : Non alcoholic fatty liver disease NASH : Non alcoholic steatohepatitis

Ns : Nonstructural protein

Nt : Neocliotides

ORF : Open reading frame

PCR : Polymerase chain reaction

PegINF : Peginterferon

Pis : Protease inhibitors

PPAR : Peroxisome proliferators activator receptor

RAVs : Resistance-associated variants

RBV : Rebavirin

RdRp : RNA-dependant RNA polymerase

SEL : Small extracellular loop

SOC : The standard of care for hev treatment

SR-B1 : Scavenger receptor B type one SVR : Sustained virologice response

TAPA-1 : Target of antiproliferative antibody -1 TM : Transememberane regions from 1 to 4

TNF : Tumor necrosis factor

TVR : Telaprevir

UTR : Untranselated reagion WAT : White adipose tissue

List of tables

Table	Title	Page
1	HCV proteins and their functions in the viral life cycle	10
2	Ishak modification for hepatic activity index (HAI) for scoring of necroinflammatory activity in chronic hepatitis	32
3	The conversion of FibroTest score into stages according to the most used histological classification (METAVIR score) for liver biopsies	35
4	Drug formulation of interferon	45
5	Child-Pugh score: Class A: 5-6 points; Class B: 7-9 points; Class C: 10-15 points	67
6	Shows description and comparison of different parameters of all patients in group I and group II	111
7	Showing descriptive and comparison between both groups as regard stages of liver fibrosis according to METAVIR score	112
8	Showing comparison between the different stages of liver fibrosis in group I as regard adiponectin level before INF therapy	113
9	Showing comparison between the stages of liver fibrosis in group I as regard adiponectin level after 12 weeks INF therapy	114
10	shows comparison between the adiponectin level before and after 12 weeks INF therapy in group I	115

List of tables (Cont.)

Table	Title	Page
11	Shows the changes in adiponectin levels	116
	(increased-decreased) in responders and	
	non responders to INF therapy in group I	
	patients	
12	Shows comparison as regard HCV RNA	117
	measured by PCR before and after 12	
	weeks INF therapy in group I	
13	Showing a comparison between both	118
	groups as regard adiponectin levels	
	before and after 12 weeks INF therapy	
14	showing correlation between adiponectin	119
	level and other prameters in group I	
	before INF therapy	
15	Showing correlation between	120
	adiponectin level and other parameters	
	in group I after 12 weeks INF therapy	
16	Cut off value of adiponeetin levels for	124
	discriminating significant fibrosis (F >	
	2) from non significant fibrosis ($F < 2$)	
17	Cut off value of adiponeetin levels for	126
	discriminating hepatic cirrhosis from	
	other stages of hepatic fibrosis	

List of Figures

Fig.	Title	Page
1	HCV structure	6
2	Organization of HCV genome. NS: non structural	7
3	The structural organization of HCV genome	9
4	HCV genome organization (top) and polyprotein processing (bottom). The 5' UTR consists of four highly structured domains and contains the IRES	9
5	HCV viral particle produced in a tissue culture system from a cloned viral genome	17
6	A simplified diagram of the HCV replication cycle	17
7	Hypothetical HCV replication cycle. HCV particles bind to the host cells <i>via</i> a specific interaction between the HCV envelope glycoproteins and cellular receptor	18
8	Interferon alpha/beta domain	43
9	Three vials filled with human leukocyte interferon	43
10	Different patterns of viral response during interferon-x-based therapy of chronic hepatitis C. SVR, sustained virological response	57
11	Liver cirrhosis as seen on an axial CT of the abdomen	59
12	Domains and structure of adiponectin	74
13	Correlations between blood adiponectin concentration and BMI in the healthy human population	76

List of Figures (Cont.)

Fig.	Title	Page
14	Adiponectin action in the liver and skeletal muscle	79
15	Anti atherosclerotic effect of adiponectin	80
16	Effect of decreased adiponectin on the process of atherosclerosis	81
17	Summary of putative functions of adiponectin in protecting hepatocytes	82
18	A hypothetical model for the secretion and action of adiponectin	87
19	Shows comparison between both groups as regard stages of liver fibrosis according to METAVIR score	112
20	Showing correlation between adiponectin levels before INF therapy and liver fibrosis stages in group I	113
21	Showing comparison between the stages of liver fibrosis in group I as regard adiponectin level after 12 weeks INF therapy	114
22	Showing comparison between adiponectin levels before and after 12 weeks INF therapy in group I	115
23	Shows the changes in adiponectin levels (increased-decreased) in responders and non responders to INF therapy in group I patients	116
24	Showing comparison as regard HCV RNA measured by PCR before and after 12 weeks INF therapy in group I	117
25	Showing comparison between both groups as regard adiponectin levels after 12 weeks INF therapy	118

List of Figures (Cont.)

E:~	Tide	Dana
Fig.	Title 1	Page
26	Positive correlation between adiponectin	121
	level before INF therapy and white	
	blood cell count in group I	
27	Positive correlation between adiponectin	121
	level before INF therapy and monocyte	
•	cells level in group I	100
28	Positive correlation between adiponectin	122
	level after12 weeks INF therapy and	
	prothrombin time in group I	
29	Positive correlation between adiponectin	122
	level after12 weeks INF therapy and	
	INR in group I	
30	Negative correlation between	123
	adiponectin level after 12 weeks INF	
	therapy and spleen size in group I	
31	Negative correlation between	123
	adiponectin level after 12 weeks	
	INFtherapy and HCV RNA in group I	
32	ROC curve analysis showing the	124
	diagnostic performance of adiponectin	
	for discriminating patients with	
	significant fibrosis $(F > 2)$ from those	
22	with non significant fibrosis ($F < 2$).	105
33	showing cut off value of ROC curve	125
2.4	analysis DOC ourse analysis showing the	127
34	ROC curve analysis showing the	126
	diagnostic performance of adiponectin	
	for discriminating patients with hepatics	
	cirrhosis from those with other stages of hepatic fibrosis	
35	showing cut off value of ROC curve	127
	analysis	12/
	anarysis	

Introduction

Adiponectin is a protein hormone called adipocytokine produced and secreted by adipocyte, with anti-diabetic, anti-lipogenic, anti-atherogenic, anti-inflammatory, and insulin sensitizing actions (*Berg AH et al., 2001*). Adiponectin directly affects inflammatory response by regulating both the production and activity of cytokines (*Ouchi N et al., 2000*).

Concentration of total adiponectin in the blood is about 3-30mg/ml (*Wouters et al.*, 2006). Low plasma levels of adiponectin are associated with insulin resistance and altered lipid pattern (*Roden et al.*, 2006).

There are two adiponectin receptors (ADIPOR1 and ADIPOR2), which have been cloned. Liver expresses both receptor genes and has the highest expression of ADIPO-R2 among the organs (*Chinetti G et al.*, 2004).

Adiponectin correlate negatively with liver fat and hepatic insulin resistance in diabetic patients (*Bajaj M et al.*, 2004). It modulates hepatic fat content, has anti-steatotic effect on the liver and reduces the plasma level of free fatty acid and their influx into the liver (*Fain NJ et al.*, 2004). Adiponectin has an antiinflamatory effect that could protect the liver from the development of inflammation and cell injury (*Ouchi N et al.*, 2000).

Adiponectin level was found to be higher in inflammatory HCV infection (*Jonsson JR et al, 2005*). it may be due to reduced ADIPO-R2 receptor level in chronic HCV infection. The reduced ADIPO-R2 expression was confirmed by immunohistochemistry (*Corbetta et al., 2011*). It is suggested that elevated levels of adiponectin in hepatic fibrosis may be due to adiponectin resistance in chronic HCV infection (*Corbetta et al., 2011*). Chronic HCV infected hepatocytes showed reduced ADIPO-R2 expression suggesting a pattern of adiponectin resistance (*Corbetta et al., 2011*).

The increased levels of adiponectin in liver cirrhosis may not dependent on the aetiology of liver cirrhosis, but depend on the clinical stage of chronic liver disease, and the

Introduction and Aim of The Work

high adiponectin levels in chronic liver disease might at least partially be due to the proinflammatory state and could reflect one of the body's antiinflammatory mechanisms in these disorders (*Tiege UJ et al.*, 2004).

A trial to evaluate whether suppression of hepatitis C is associated with improvement in IR (insulin resistance) was done. Patients included in that trial underwent 24 weeks of pegylated interferon and ribavirm therapy and were categorized into HCV clearance groups at week 20 on the basis of HCV RNA levels; null responders had <1 logic decline, partial responders had >1 logic decline but detectable HCV RNA, and complete responders had no detectable HCV RNA. Change in IR by using the homeostasis model assessment (HOMA2-IR) was found (*Aymin et al.*, 2010).

Association between HCV clearance and improvement in HOMA24R was found in that study. Multiple factors have been accounted for these improvements. Adiponectin, tumor necrosis factor-alpha, age, gender, ethnicity, body mass index, duration of infection, medications used, and fibrosis were all suggested (*Aymin et al.*, 2010).

In another study, treatment of chronic HCV patient with IFN-a resulted in a decrease of serum adiponectin levels but an improvement of insulin resistance in responders to the treatment (*Jin et al.*, 2005).

Serum adiponectin appears to be an independent predictor of liver steatosis in patients infected by HCV. It also appears to be an independent predictor for the achievement of end-of-treatment virological response after interferon alpha therapy (*Theodores and Zografos et al.*, 2008).

Aim of the Work

To evaluate the serum levels of Adiponectin in patients with HCV causes chronic hepatitis, assess its levels in those patients with and without interferon therapy and detect its level before and during treatment n responders.

Chapter1

Hepatitis C Virus Infection

Hepatitis C is an infectious disease affecting primarily the liver, caused by the hepatitis C virus (HCV). The infection is often asymptomatic, but chronic infection can lead to scarring of the liver and ultimately to cirrhosis, which is generally apparent after many years. In some cases, those with cirrhosis will go on to develop liver failure, liver cancer or lifethreatening esophageal and gastric varices (*Ryan et al.*, 2004).

HCV VIrology

The hepatitis C virus (HCV) is a small, enveloped, single-stranded, positive-sense RNA virus (*Rosen, 2011*). It is a member of the hepacivirus genus in the family Flaviviridae (*Ray et al., 2009*). There are seven major genotypes of HCV, which are indicated numerically from one to seven (*Louie et al., 2011*).

HCV genotypes

An important variable for all patients with chronic hepatitis C virus (HCV) is the "genotype" of HCV with which they are infected. This is the strain of the virus to which they were exposed when they were infected, and it is determined by a simple blood test.

Genotypes of HCV are genetically distinct groups of the virus that have arisen during its evolution (*Bukh et al.*, 1995).

Approximately 75% of Americans with HCV have genotype 1 of the virus (subtypes 1a or 1b), and 20-25% have genotypes 2 or 3, with small numbers of patients infected with genotypes 4, 5, or 6 (*McHutchison et al.*, 1998). Most patients with HCV are found to have only one principal genotype,