Effect of intralesional botulinum toxin type A injection on keloid and hypertrophic scar

Thesis submitted for partial fulfillment of Master Degree of Dermatology and Venereology

By

Mohamed Mesbah Abdelazeem

(M.B; B.Ch)

Supervised by

Prof. Dr May Hussein Elsamahy

Professor of Dermatology, Venereology and Andrology
Faculty of Medicine. Ain shams University

Dr Al Hasan Mohamed Elhefnawy

Lecturer of Dermatology, Venereology and Andrology
Faculty of Medicine. Ain shams University

Faculty of Medicine

Ain shams University

بسم الله الرحمن الرحيم

قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

حدق الله العظيم

سورة البهرة الاية ٣٢

Acknowledgment

Thanks to "Allah" first and foremost. I feel always indebted to God, the most kind and the most merciful, to whom I relate every success in my life.

I would like to express my deep gratefulness and respect to **Prof. Dr. May** Hussein Elsamahy, Professor of Dermatology, Venereology, and Andrology, Faculty of Medicine, Ain Shams University, for her moral and scientific support throughout the preparation of this study, and for giving me the honor of working under her supervision and valuable guidance.

Special thanks and deepest gratitude to **Dr. Al Hasan Mohamed Elhefnawy** Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine Ain shams University, for his sincere scientific and moral help.

My deepest appreciation and grateful thanks are to **Dr. Moanes**Abdelaleem Hassan, **Dr. Mohamed Saad hegazy, Dr. Maged Ali Elshiekh,**consultants of Dermatology and Venereology, military medical academy, for
their king advice and their great efforts throughout this work.

No words could express my thanks to my father and my mother for their encouragement and help

Finally, I have no other words to express sincerely my gratitude to **my wife** nora and my son omar for their help, tolerance, and support, until I finished this work and forever.

List of Contents

Title	Page
Introduction	1
Aim of work	4
Review of Literature:	5
I: Wound healing	5
II: Keloids and Hypertrophic Scars	15
III: Botulinum neurotoxin	62
Patients and Methods	95
Results	104
Discussion	117
Summary	124
Conclusion	128
Recommendations	129
References	130

Arabic Summary

List of Figures

Figure Number	Title	Page
Figure 1	Time scale of the 4 phases of healing	10
Figure 2	Pathogenesis of keloids and hypertrophic scars	36
Figure 3	Clostridium botulinum bacilli with spores	67
Figure 4	Structure of botulinum neurotoxin showing both light and heavy chains	72
Figure 5	The heavy chain portion of BTX binds to the cell membrane of the motor nerve	74
Figure 6	The BTX protein molecule passes through the cell membrane of the motor nerve and into its cytoplasm via a process called endocytosis	76
Figure 7	Inside the nerve, the light chain of the BTX cleaves a part a protein (called SNAP25) that enables vesicles which store ACh.to attach to the cell membrane	77
Figure 8	External caliber used in measurement of keloid and hypertrophic scar sizes.	97
Figure 9	OnabotulinumtoxinA BOTOX® Cosmetic for injection 100Units/vial	100

Figure 10	Results of Intralesional Botulinum Toxin Type A Injection as regards Clinical response.	106
Figure 11	Results of Intralesional Botulinum Toxin Type A Injection as regards Patient satisfaction	108
Figure 12	Results of Intralesional Botulinum Toxin Type A Injection as regards erythema.	110
Figure 13	Results of Intralesional Botulinum Toxin Type A Injection as regards pliability	112
Figure 14	Results of Intralesional Botulinum Toxin Type A Injection as regards itching.	114
Figure 15	before and after Intralesional Botulinum Toxin Type A Injection	115
Figure 16	before and after Intralesional Botulinum Toxin Type A Injection	116

List of Tables

Table Number	Title	Page
Table 1	The main differences between keloids and hypertrophic scars.	39
Table 2	Histologic differences between keloids and hypertrophic scars	42
Table 3	Botulinum toxin manufacturer recommendations on supply, dilution and storage	94
Table 4	Clinical date of studied patients	104
Table 5	Results of Intralesional Botulinum Toxin Type A Injection as regards Clinical response.	105
Table 6	Results of Intralesional Botulinum Toxin Type A Injection as regards Patient satisfaction.	107
Table 7	Mean score, standard deviation and t-value differences of pre and post ttt score regarding to Erythema	109

Table 8	Mean score, standard deviation and t-value differences of pre and post ttt score regarding to pliability.	111
Table 9	Mean score, standard deviation and t-value differences of pre and post ttt score regarding to itching	113

List of Abbreviations

ACh.	Acetylcholine
B.C.	Before Christ
BTX	Botulinum neurotoxin
BTX-A	Botulinum toxin type A
C. botulinum	Clostridium botulinum
Ca^{2+}	Calcium
Cl	Chlorine
CO_2	Carbon dioxide
DNA	Deoxyribonucleic acid
EGA	Estimated gestational age
EGF	Epidermal growth factor
ELISA	Enzyme-linked immunosorbent assay
FDA	Food and Drug Administration
H2O2	Hydrogen peroxide
HC	Heavy chain
HCC	Carboxyl-terminal of the heavy chain of botulinum toxin
He-Ne	Helium-neon
HN	Amino terminal of the heavy chain of botulinum toxin
HPV	Human papilloma virus
ICAM-1	Intercellular adhesion molecule-1
Ig	Immunoglobulin
IGF-1	Insulin-like growth factor-1
IL	Interleukin
INF	Interferon
J	Joules
K ⁺	Potassium
KCl	Potassium chloride

kDa.	Kilo dalton
KTP	Potassium-titanyl-phosphate
LASER	Light amplification by stimulated emission of radiation
LC	Light chain
LP	Long-pulsed
MASER	Microwave amplification by stimulated emission of radiation.
Mg/min.	Milligrams per minute
MSH	Melanocyte stimulating hormone
Na ⁺	Sodium
NaCl	Sodium chloride
Nd	Neodymium
NMJ	Neuromuscular junction
NO	Nitric oxide
NOS	Nitric oxide synthase
NRC	National Research Center
0	Singlet oxygen
02	Superoxide anion radical
OH ⁻	Hydroxyl radical
PDGF	Platelet derived growth factor
pH.	potential Hydrogen
PTH	Parathyroid hormone
QOL	Quality of life
QS	Quality-switched
RNA	Ribonucleic acid
ROS	Reactive oxygen species
CNADE	Soluble N-ethyl-maleimide-sensitive
SNARE	fusion protein attachment receptor
SOD	Superoxide dismutase
TWI	Tap water iontophoresis
TAC	Triamcinolone acetonide

_____6 -

TGF	Transforming growth factor
TNF	Tumour necrosis factor
TRT	Thermal relaxation time
VIP	Vasoactive intestinal polypeptide
Zn	Zinc
5-FU	5-Flurouracil

Introduction

A keloid is a benign cutaneous tumor produced by uncontrolled synthesis and deposition of dermal collagen in predisposed individuals. Keloids affect both sexes equally, although the incidence in young female patients has been reported to be higher than in young males, probably reflecting the greater frequency of earlobe piercing among women. There is a fifteen times higher frequency of occurrence in highly pigmented people. Persons of African descent are at increased risk of keloid occurrences (*Zhibo and Miaobo*, 2009).

A keloid is a type of scar, which depending on its maturity, is composed mainly of either type III (early) or type I (late) collagen. It is a result of an overgrowth of granulation tissue (collagen type III) at the site of a healed skin injury which is then slowly replaced by collagen type I (*Rapini et al.*, 2007).

Keloids are firm, rubbery lesions or shiny, fibrous nodules, and can vary from pink to flesh-coloured or red to dark brown in colour. A keloid scar is benign, non-contagious, but sometimes accompanied by severe itching, pain and changes in texture. In severe cases, it can affect movement of skin. Keloids should not be confused with hypertrophic scars, which are raised scars that

do not grow beyond the boundaries of the original wound (*Ogawa*, 2010).

Histologically, keloids are fibrotic tumors characterized by a collection of atypical fibroblasts with excessive deposition of extracellular matrix components, especially collagen, fibronectin, elastin, and proteoglycans. Generally, keloids contain relatively acellular centers and thick, abundant collagen bundles that form nodules in the deep dermal portion of the lesion. There are four histologic features that are consistently found in keloid specimens that are deemed pathognomonic for their diagnosis, They are: 1) the presence of keloidal hyalinized collagen, 2) a tonguelike advancing edge underneath normal-appearing epidermis and papillary dermis, 3) horizontal cellular fibrous bands in the upper reticular dermis, and 4) prominent fascia-like fibrous bands (*Lee et al.*, 2004).

Keloids are associated with small-fiber neuropathy and typically present with itching, pain, and usually causes major physical, psychological, and cosmetic problems. Treatment of the hypertrophic scar still is a dilemma due to the lack of effective and excellent methods and agents (*Uyesugi et al.*, 2010).

Keloids present a therapeutic challenge that must be addressed, numerous treatments are currently available but they do not always yield excellent therapeutic results. Hence,

alternatives are needed. Recent basic and clinical research has shown that botulinum toxin type A (BTXA) has antihypertrophic scar properties but the molecular mechanism for this action is still unknown (*Xiao et al.*, *2010*).

Botulinum toxin injection has been used for a variety of indications in humans, including blepharospasm, hyperhidrosis and hyperfunctional facial lines (*Gassner and Sherris*, 2002).

the efficacy and safety of botulinum toxin type A in inhibiting and preventing the tensile force caused by shrinking of skin and muscle have been established by long-term follow-up studies (*Zhibo and Miaobo*, 2009).

Aim of work

The aim of work is to assess the efficacy and safety of intralesional injection of botulinum toxin types A (BTXA) in the treatment of keloids and hypertrophic scars.