

Computer Aided Detection System for Microcalcifications in Digital Mammograms

By

Eng. Hayah Mohamed Bedear

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

SYSTEMS AND BIOMEDICAL DEPARTMENT

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Computer Aided Detection System for Microcalcifications in Digital Mammograms

By

Eng. Hayah Mohamed Bedear

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
SYATEMS AND BIOMEDICAL DEPARTMENT

Under the Supervision of **Prof. Dr. Amr Sharawy Prof. Mai S. Mabrok**

Professor of Syatem & Biomedical Engineering

.....

System & Biomedical Department Faculty of Engineering, Cairo University

Ass. Professor and Department head Biomedical engineering Department

System & Biomedical Department Faculty of Engineering, Must University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Computer Aided Detection System for Microcalcifications in Digital Mammograms

By

Hayah Mohamed Bedear

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
SYSTEM AND BIOMEDICAL DEPARTMENT

Approved by the
Prof. Dr. Amr Sharawy, Thesis Main Advisor
Dr. Mai S. Mabrouk, Thesis Supervisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Table of Contents

ACKNOWLEDGMENT	IV
LIST OF FIGURES	IX
LIST OF TABLES	XI
LIST OF ABREVIATIONS	XII
ABSTRACT	
Chapter 1: INTRODUCTION	1
1.1 Introduction	
1.2 Thesis Objective	4
1.3 Thesis Organization	5
Chapter 2: Medical Background and Literature Review	6
2.1 Introduction	6
2.2 Breast Properties	6
2.2.1 Breast Structure	6
2.2.2 Breast Pathologies	6
2.2.2.1 Fibro Adenoma	7
2.2.2.2 Mammary Dysplasia	8
2.2.2.3 Mastitis and BreastAbscess	9
2.2.2. Gynecomastia	10
2.3 Background on Cancer	7
2.3.1 Cancer	7
2.4 Breast cancer	8
2.4.1 Breast Cancer Symptoms	9
2.4.2 Breast Cancer Lesions	10
2.4.3 Types of Breast Cancer	12
2.4.4 Breast Cancer Statistics	14
2.4.5 Risk factor	9
2.5 Breast Cancer Diagnosis	12
2.5.1 Mammography	15
2.5.1.1 Screening Mammography	16
2.5.1.2 Diagnostic Mammography	17
2.5.2 Digital Mammography	18
2.5.2.1 Mammography Equipment	19
2.5.3 Computer Aided Diagnosis	20
2.5.4 Databases	21
2.5.4.1 MIAS Database	21
2.6 Literature Review	22
2.7 Summary	22
Chapter 3: Methodology	6
3.1 Introduction	22
3.2 Main Block Diagram.	24

3.3 Implementation	25
3.4 Preprocessing	26
3.4.1 Image Enhancement	
3.4.1.1 Full-Scale Histogram Equalization	28
3.4.1.2 Wavelet Transform	29
3.4.1.3 Morphological Enhancement	33
3.4.1.4 Histogram Equalization	34
3.4.2 Image Segmentation	36
3.4.2.1 Mammogram and Breast Regions	37
3.4.2.2 Otsu's Technique	38
3.4.2.3 Local Thresholding	39
3.4.2.4 Pectoral Muscle Separation	39
3.4.2.5 Background Removal	40
3.4.2.6 Fill in Tumor	41
3.4.2.7 Trace Boundary	42
3.4.2.8 Micro calcification Extraction	44
3.5 Feature Extraction	45
3.5.1 Morphological Features	46
3.5.1.1 Geometric Features	47
3.5.2 Texture Features	49
3.5.2.1 Higher Order Statistical Features	50
3.5.3 Moment Invariant	52
3.5.3.1 Therory	54
3.6 Feature Selection	52
3.6.1 Fisher score	53
3.7 Classification	55
3.7.1 Artificial Neural Network	56
3.7.1.1 Multi Layer Perceptron	57
3.7.2 K-Nearest Neighbor	60
3.7.3 Support Vector Machine	
3.8 Performance Measure	
Chapter 4: Experimental Results and Discussion	6
4.1Introduction	
4.2 Single Models	
4.2.1 Texture Analysis Approach	
4.2.1.1 Texture based on GLCM without Wavelet Transform	
4.2.1.2 Texture based on GLCM with Wavelet Transform	
4.2.2 Geometric Approach	
4.2.3 Invariant Moments	
4.3 Combined Model.	
4.3.1 Dual approach	
4.3.1.1 Geometric and Texture Features	
4.3.2 Multiple Approach	88

4.3.2.1 Invariant, Texture and Geometric Features	100
Chapter 5: Conclusion and Future work	115
REFERENCE	138

ACKNOWLEDGMENT

I would first like to thank ALLAH the Beneficent, the Merciful. Praise be to ALLAH, Lord of the Worlds. ALLAH who guides me along the way, And thanks to my supervisors, Prof. Dr. Amr Sharawy, Thesis Main Advisor Dr. Mai S. Mabrouk, Owis for their guidance, inspiration and wisdom during the preparation of this thesis. Also, I appreciate the great aid and support from all the members of the System and Biomedical Engineering Department, Cairo University.

Finally, I am indebted to thank my family for their continuous support, encouragement and understanding. Special thanks go to Soul of my dad, my guardian angel, and my hidden energy. I Wish he Were here.

List of Figures

Figure 1.1: Death Rates of Cancers
Figure 2.1: Schematic structure of skin
Figure 2.2: Cancers Development
Figure 2.3: Incidence Rate and Mortality Rate
Figure 2.4: Signs of Breast Cancer
Figure 2.5: Digital images of Breast Cancer
Figure 2.6: Mass Shapes images
Figure 2.7: Mass Margins images
Figure 2.8: ROIs Mammography images
Figure 2.9: Types of Breast Cancer
Figure 2.10: Rates of Breast Cancer according to Age
Figure 2.11: Breast Cancer Diagnoses Rate
Figure 2.12: Rate of Mortality of Breast Cancer
Figure 2.13: Average of No. Cases and Age at diagnosis
Figure 2.14: Incidence Rate of Breast Cancer among world
Figure 2.15: Views Taken in Screening Mammography
Figure 2.16: Latero medial (LM) Mammographic View (Left)28
Figure 2.17: Medio lateral (ML) Mammographic View (Right)
Figure 2.18: Schematic representation of a digital mammography system
Figure 2.19: Two distinct mammographic projections
Figure 2.20: Breast localization
Figure 2.21: A typical mammography unit 35
Figure 2.22: The role of computer-aided interpretation in breast cancer screening36
Figure 3.1: A schematic diagram for the CAD system
Figure 3.2: Enhancement block diagram
Figure 3.3: Linear Contrast Stretching43
Figure 3.4: Contrast Stretching Image 44
Figure 3.5: Three Levels Multi-resolution De-composition. 45
Figure 3.6: A Wavelet Decomposition of an Image 46
Figure 3.7: Histograms (PDFs) of four transformed images
Figure 3.8: Steps of Dual Morphological Operation 47
Figure 3.9: Steps of Histogram Equalization 48
Figure 3.10: Mammogram Breat Region 49
Figure 3.11: Binarization Results 51
Figure 3.12: Distribution of the object and background intensity
Figure 3.13: Pectoral muscle segmentation 58
Figure 3.14: Background removal of breast mammogram image
Figure 3.15: Filled in tumor steps
Figure 3.16: Tracing Process
Figure 3.17: Final Micro calcification extraction representation
Figure 3.18: Schematic representation for image pre-processing steps
Figure 3.19: Schematic representation for image pre-processing steps (Cont.)68
Figure 3.20: Schematic of gray level co-occurrence matrix (GLCM)

Figure 3.21: Example of co-occurrence matrix	73
Figure 3.22: Geometry directions of adjacency for calculating GLCM	feature 80
Figure 3.24: Seven Invariant Moments based on Rotation	82
Figure 3.24: Brain neuron	. 82
Figure 3.25: Basic ANN model of a single neuron	82
Figure 3.26: Multi-layer feed-forward networks	83
Figure 3.27: Linear separating hyper-planes for the separable case	84
Figure 4.1: Single and combined Techniques' approaches 90	
Figure 4.2: Single Model Block Diagram	
Figure 4.3: Single Model with wavelet transform	92
Figure 4.4: Geometric Block Diagram	
Figure 4.5: Invariant Moments Block Diagram 94	
Figure 4.6: Dual Model Block Diagram 94	
Figure 4.7: Multiple Model Block Diagram 94	

List of Tables

Table 2.1: Grading of imaging reports of micro calcifications according to risk of	
malignancy	. 7
Table 2.2: Relate between the stage and T category	. 8
Table 3.1: Results of seven Invariant moments.	15
Table 4.1: Features results (Normal-Abnormal) according to GLCM	. 9
Table 4.2: Features results (Malignant-Benign) according to GLCM	11
Table 4.3: Features results (3db Wavelet) according to GLCM	12
Table 4.4: Features results (6db Wavelet) according to GLCM	12
Table 4.5: Features results according to Shape features	13
Table 4.6: Features results according to Invariant Moments Features	
Table 4.7: Classification results for Geometric and Texture features	13
Table 4.8: Classification results for Geometric, Texture features and Invariant	
Moments	3

List of Abbreviations

DCIS: Ductal Carcinoma In Situ

LCIS: lobular carcinoma in situ

MRI: Magnetic resonance imaging

IBC: Inflammatory breast carcinoma

HRT: Hormone replacement therapy

BRCA: Breat Cancer

CC: Cranial-Caudal

MLO: Medio-Lateral Oblique

LM: lateromedial

ML: Mediolateral view

FFDM: Full-field digital mammography

SFM: Screen film mammography

DICOM: Digital Image Computer Mammography

AEC: Automatic exposure control

MIAS: Mammographic image analysis society

ALOE: Local edge orientation histogram

DOG: Difference of Gaussian

FN: False Negatives

FP: False Positives

TP: True Positive

TN: True Negative

ROI: Regions of Interest

MCCS: Micro Calcifications

CADe: Computer Aided Detection

CADx: Computer Aided Diagnosis

FCC: Fibrocystic Changes

ACR: American Cancer Radiology

FSHS: Full Scale Histogram Stretching

GHE: Grayscale histogram equalization

HE: Histogram Equalization

GLCM: Gray Level Co-occurrence Matrix

ANN: Artificial Neural Network

KNN: K-Nearest Neighbor

SVM: Support Vector Machine

NCI: National Cancer Institute

MLP: Multi Layer Perceptron

Before

Abstract

Breast cancer is the uncontrolled growth of abnormal cells in the breast, continues to be a significant public health problem in the world and the second leading cause of cancer death, following lung cancer. Micro calcification clusters (MCCs) and masses are the two most important signs for the breast cancer, and their automated detection is very valuable for early breast cancer diagnosis. Early detection is the key for improving breast cancer prognosis.

Among U.S. women, breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death, following lung cancer. About 10% of the approximately 8.25 million Dutch women have to face breast cancer. Every year there are around 11,000 newly diagnosed breast cancer patients. Men account for less than 1% of the diagnosed breast cancers. 25% of the newly diagnosed patients are detected by the breast cancer screening programe. The five year survival rate can be increased from 60% to 82% by an early diagnosis of breast cancer. The breast cancer screening program is offered to women aged 50-75 and about 76% of the women take part. The mammography screening takes place every 2 years. 100 of the 10,000 mammographically screened women are recalled for additional assessment. So, during the last years, screening programs became essential step for women over 40 years old. Therefore, physicians have to examine a huge number of images leading to 10-30% of missed breast lesions.

Mammogram breast X-ray is considered the most reliable method in early detection of breast cancer and the single most effective, low-cost, and highly sensitive technique for detecting small lesions. However, the sensitivity of mammography is highly challenged by the presence of dense breast parenchyma, which deteriorates both detection and characterization tasks. As the consequences of errors in detection or classification are costly and since mammography alone cannot prove that a suspicious area is timorous malignant or benign, the tissue has to be removed for closer examination using breast biopsy techniques.

Thus, Image processing techniques have been developed methods for automatic detection and classification of suspicious areas in mammograms, as a means of aiding radiologists to improve the efficacy of screening programs and avoid unnecessary biopsies. Computer aided tools have been shown to be powerful systems to overcome this problem;

the reader's sensitivity can be increased by an average of 10% with the assistance of CAD systems.

The main goal of this thesis is to develop a Computer Aided Diagnosis (CAD) system based on supervised classification that can be very helpful for radiologist in diagnosing and detecting the specific abnormalities breast cancers' patterns (mass and micro calcification) in digitized mammograms earlier and faster than typical screening programs, and improving the diagnostic accuracy in making the diagnostic decisions by applying techniques splits into steps procedure beginning preprocessing step using the best image enhancement techniques by using Full Scale Histogram Stretching (FSHS), Histogram Equalization (HE), Morphological Enhancement and Wavelet Transform to improve the quality of the image to make it ready to further processing by removing the unrelated and surplus parts in the back ground of the mammogram in order to improve the image quality and make the segmentation results more accurate, followed by segmentation based on Otsu's threshold the region of interest for the identification of micro calcifications and mass lesions. Different features type geometric, chromatic and texture features are extracted from the region of interest resulted from segmentation using Moment Invariant, Shape Features and Gray Level Co-occurrences Matrix Features. Then, the most prominent features that can cause an effect are selected by the Fisher score method. Selected features are fed into three different classifies, which classify between normal and microcalcifications 'patterns and then classify between benign and malignant micro- calcifications. In classification stage; three methods were used, the voting K-Nearest Neighbor classifier (K-NN) with prediction accuracy of 80%, Support Vector Machine classifier (SVM) with prediction accuracy of 83%, and Artificial Neural Network classifier(ANN) with prediction accuracy of 96%.

Chapter 1

Introduction

1.1 Introduction

Breast cancer is the most common cancer and continues to be a significant public health problem among women around the world [1], and is the second leading cause of female cancer mortality after lung cancer [2]. There are different types of breast cancer, with different stages (spread), aggressiveness, and genetic makeup. With best treatment, 10-year disease-free survival varies from 98% to 10%. Treatment includes surgery, drugs (hormone therapy and chemotherapy), and radiation. According to the World Health Organization, more than 1.2 million people worldwide will learn they have breast cancer this year. The American Cancer Society estimates women in the United States will account for approximately 213,000 of these cases. The National Cancer Institute (NCI) reports breast cancer as the most common type of cancer among women in the US.

Statistics have shown that 1 out of 10 women are affected by breast cancer in their lifetime. An estimated 1.38 million women across the world were diagnosed with breast cancer in 2008, accounting for nearly a quarter (23%) of all cancers diagnosed in women. It is also the most common cause of death from cancer in women worldwide, estimated to be responsible for almost 460,000 deaths in 2008[3]. According to the American Cancer Society in 2009, approximately 269,800 cancer deaths in women and the breast cancer reaches to 15% from it. The diagnosed cancer cases were 713,220 and the breast cancer occupied 27% of these cases, and estimates that in 2011[4] approximately 230,480 women in the US diagnosed with tumor breast cancer, and about 39,520 women died from breast cancer. In 2013, an estimated 232,340 new cases of invasive breast cancer and 39,620 breast cancer deaths are expected to occur among U.S. women [5]. Cancer statistics claim that breast cancer got the third position of appearance in diagnosed new cases following genital organs and digestive systems cancer comparing to other forms of cancer [6]. Figure 1.1 shows death rates due to breast cancer in comparison to other types of cancer over the last seven decades. Early detection and diagnosis of breast cancer plays a very important role in cancer treatment and allows a faster recovery for most of the patients, and considered the most effective methods of reducing mortality [7,8].