Accuracy of Changes in ST Segment Elevation 60 Minutes after Thrombolytic Treatment in Predicting the Clinical Outcome Compared with the Late Changes

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

Presented by

Omar Mohamed Al Molakab Abd Al-Satar M.B.B.Ch.

Under Supervision of

Professor/ Nireen Khalifa Okasha

Professor of Cardiology Faculty of Medicine - Ain Shams University

Doctor/ Mohamed Ismail Ahmed

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2011

التنبؤ بمدى التحسن بعد الاحتشاء الحاد لعضله القلب وذلك باستخدام التغيرات الحادثة في الرسم الكهربائي للقلب في قطعة ST بعد ساعة من إعطاء العقار المذيب للجلطة مقارنة بالتغيرات المتأخره

رسالة توطئة للحصول على درجة الماجستير في أمراض القلب

> مقدمة من عمر محمد الملقب عبد الستار بكالوريوس الطب والجراحة

تحت إشراف الدكتور/نيرين خليفة عكاشة أستاذ أمراض القلب والأوعية الدموية كلية الطب - جامعة عين شمس

الدكتور / محمد إسماعيل أحمد أستاذ مساعد أمراض القلب والأوعية الدموية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

Analysis of ST-segment resolution on ECG, after fibrinolytic therapy, in cases of ST elevation Myocardial Infarction offers an attractive and cost effective solution to assess coronary reperfusion. Whereas coronary angiogram is a marker for epicardial reperfusion, ST segment resolution offers a better reflection of microvascular reperfusion. Although successful thrombolysis of the epicardial vessel is necessary for good prognosis, but the micro-vascular flow more strongly correlates with the outcome. ST segment is therefore a better indicator of prognosis, and provides information,

The aim of the work to evaluate the ST segment resolution after reperfusion by thrombolytic therapy as a prognostic predictor of clinical outcome in patients with ST segment elevation myocardial infarction.

Forty patients were included in the study. Their age ranged between 42 to 67 years with a mean of 56.2 ± 7.9 years. They were 29 males (86.3%) and 11 females (13.7%).

Patients received thrombolytic therapy for STelevation myocardial infarction were included in the study. Patients with contraindications to thrombolysis, prior history of myocardial infarction, late presentation

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Nireen Khalifa Okasha, Professor of Cardiology for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Mohamed Ismail Ahmed, Assistant Professor of Cardiology for her sincere efforts, fruitful encouragement.

Omar Al Molakab

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	3
Review of Literature	
• Electrocardiogram in The Diagnosis of Myod Ischemia and Infarction	
• Electrocardiogram in the Prognosis of Myoc. Infarction or Unstable Angina	
 Markers of Efficacy of Success of Thromboly Agents in Acute ST Elevation Myocardial Infarction 	
The No-Reflow Phenomenon	95
Patients and Methods	113
Results	121
Discussion	139
Summary	146
Conclusion	150
Recommendations	151
References	152
Arabic summary	

List of Tables

Table No.	Title P	age No.
Table (1):	Definition of myocardial infarction	5
Table (2):	ECG manifestations of acute myocardial ischae	emia
	(in absence of LVH and LBBB)	7
Table (3):	ECG changes associated with prior myocar	rdial
	infarction	
Table (4) :	Causes and diagnosis of tall R waves in V1	20
Table (5):	Causes and diagnosis of tall R waves in V1	34
Table (6):	Causes of ST segment elevation	36
Table (7):	Causes of Q waves	
Table (8):	Age and sex distribution of all the studied patie	ents 121
Table (9):	Risk factors for CAD among all the stu	died
	patients	
Table (10):	Shows the results of laboratory investigat	
	among all the studied patients	
Table (11):	Creatine Kinase and MB isoform among all	
	studied patients at the different follow up period	
Table (12):	Location of MI among all patients	
Table (13):	Mean ST segment elevation at the different for	
	up periods	
Table (14):	ST segment resolution	
Table (15):	Shows the results of echocardiographic study of	
	the studied patients	
Table (16):	Major adverse cardiovascular events reco	
— 11 (1-)	among all the studied patients	
Table (17):	Baseline characteristics according to ST-segr	
m 11 (10).	resolution	
Table (18):	Results of coronary angiography among all	
m 11 (10)	studied patients	
Table (19):	Echocardiographic measurements according to	
m 11 (20).	segment resolution	
Table (20):	Major adverse cardiovascular events according	_
л. I. I. (от).	the degree of ST segment resolution	
rabie (21).	Results of coronary angiography according to	
	segment resolution	138

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Diffuse subendocardial ischemia manifesto prominent ST depressions in leads I, II, aVL, aV V2 to V6, with ST elevation in aVR. A prolon interval (0.28 sec) is also present	/F, and ged PR
Fig. (2):	Electrocardiogram shows findings typical of an evolution wave anterior MI.	
Fig. (3):	Later stage in the evolution of an acute a myocardial infarction	
Fig. (4):	Acute inferior and right ventricular MI	18
Fig. (5):	Acute infero-postero-lateral MI.	19
Fig. (6):	Electrocardiogram showing the major features inferior (Q waves, ST elevations, and T wave invin II, III, and aVF), posterior (tall R waves in V1 a and lateral (T wave inversions in V4 to V6) myoinfarction.	versions .nd V2), ocardial
Fig. (7):	Inferior MI with anterior ischemia Electrocard showing ischemic changes in two areas myocardium: inferior myocardial infarction (Q was ST elevations in leads II, III, and aVF); and a ischemia (ST depressions in leads V2 and V3)	of the ves and anterior
Fig. (8):	Persistent ST segment elevation post-MI	27
Fig. (9):	Acute pericarditis showing diffuse upsloping ST s elevations seen best here in leads II, III, aVF, an V6	d V2 to
Fig. (10):	Early repolarization.	38
Fig. (11):	T wave abnormalities following stroke	41
Fig. (12):	In four studies of thrombolytic therapy for armyocardial infarction	
Fig. (13):	All ST changes measured in lead with maximum at baseline.	
Fig. (14):	Among 12,142 patients entered into GUSTO IIb	55
Fig. (15):	ST segment depression on the initial ECG is ass with mortality in unstable angina	
Fig. (16):	Schematic of factors potentially influencing TIM	I grade

List of Figures (cont...)

Fig. No.	Title	Page No.
Fig. (17):	The rate of a patent artery	65
Fig. (18):	In the GUSTO-I trial, the 30 day mortality rat thrombolysis for acute ST elevation myocardial int varied with the degree of vessel patency achieved	farction
Fig. (19):	Among all patients with acute ST elevation myoinfarction entered into the GUSTO-I trial	
Fig. (20):	Use of TIMI frame count to risk stratify within TII grades	
Fig. (21):	Mortality after thrombolytic therapy is lowe complete ST segment resolution.	
Fig. (22):	Prognosis of myocardial infarction in relation changes at 90 minutes	
Fig. (23):	The reperfusion regimens used in the TIMI-14 su were tissue plasminogen activator (tPA) combinations of abciximab plus reduced-dos whereas the fibrinolytic agent used in the HIT-was streptokinase	o and e tPA, 4 study
Fig. (24):	After a two-year follow-up, patients with ray segment resolution after thrombolysis had a incidence of reinfarction (27 versus 9 percent), lower incidence of congestive heart failure, mortality and/or CHF (3 versus 22 percent) comp those without rapid ST segment resolution	higher but a ity, and ared to
Fig. (25):	Early ST segment shifts after thrombolysis outcome after MI.	
Fig. (26):	Infarct size measured by sestamibi predicts mortal	lity90
Fig. (27):	Elevated procoagulant levels after thrombolysis outcome	_
Fig. (28):	Treatment of no-reflow	107
Fig. (29):	2D dimension guided M-Mode echo of the left ve at the papillary muscle level, the LV end d internal dimension (EDd) measured and the I systolic internal dimension thereafter	iastolic LV end
Fig. (30):	Diagram of two orthogonal apical views to illustremodified Simpson method in calculating left ventors (LV) volume	

List of Figures (cont...)

Fig. No.	Title	Page No.
Fig. (31):	Sixteen segment model for regional wall motion proposed by the American society of echocardiogr	•
Fig. (32):	Risk factors for CAD among all the studied patien	nts 122
Fig. (33):	Mean CPK at the different follow up periods at the studied patients	_
Fig. (34):	Mean CK-MB at the different follow up periods a the studied patients	
Fig. (35):	Location of infarction among all the studied patie	ents 126
Fig. (36):	Mean ST segment changes at the different for periods among all the studied patients	•
Fig. (37):	Incidence of ST segment resolution among all the patients.	
Fig. (38):	Incidence of major adverse cardiovascular event all the studied patients	_
Fig. (39):	Echocardiographic measurements according segment resolution	
Fig. (40):	Ejection fraction and Fraction shortening acco ST-segment resolution	_
Fig. (41):	Incidence of mitral regurgitation according segment resolution	
Fig. (42):	Major adverse cardiovascular events according degree of ST segment resolution	

List of Abbreviations

ACS	Acute coronary syndrome
CABG	Coronary artery by pass graft
CK	Creatine kinase
CK.MB	Creatine kinase. MB isoform
ECG	Electrocardiogram
HF	Heart failure
LAD	Left anterior descending coronary artery
LBBB	Left bundle branch block
LVH	Left ventricular hypotrophy
MI	myocardial infarction
NSTEMI	Non ST elevation myocardial infarction
PCI	Percutaneous coronary intervention
STEMI	ST elevation myocardial infarction

Introduction

ne of the most valuable contributions of ECG is in the diagnosis of myocardial infarction .Pattern of ST segment displacement especially with associated Q waves and T waves changes is highly suggestive if not diagnostic of acute myocardial infarction. The presence of Q waves at presentation with a first acute ST Segment elevation myocardial (STEMI) reflects a more advanced stage of the infarction resolution of ST segment elevation indicating successful myocardial reperfusion may differ according to how far the infarction process has progressed (Uyarel et at., 2006).

A detailed analysis of ST segment elevation may influence decision regarding the use of reperfusion therapy (Zimethaum et al., 1998).

The management of acute myocardial infarction is targeted towards the restoration of blood flow in infarct related artery (Zimethaum et al., 1998).

The aim of thromblytic in acute myocardial infarction (AMI) is early and complete myocardial reperfusion. In complete or delayed reperfusion is associated with an increased risk of death and left ventricular dysfunction (Angeja et al., 2002).

Resolution of ST segment elevation is believed to be an excellent marker of tissue perfusion and the degree of resolution has proved to be a powerful indicator of prognosis (Matezky et al., 1999).

Assessment of ST segment resolution is also useful for guiding reperfusion therapy .the absence of ST segment resolution during the first 90 minute s after administration of fibrinolytic medication s should prompt consideration of rescue angioplasty (*Poli et al.*, 2002).

A reduction in ST segment elevation by more than 70% in the leads with maximal elevation are associated with the most favorable outcomes (Schroder et al., 2001).

Early angiographic studies of thrombolysis suggested the most successful reperfusions occur with 60 minutes of thrombolysis which in combination with data form continuous ST segment monitoring strongly suggested that the 12 –lead s ECG at 60 minutes could used to predict clinical outcome (*Anegeja et al., 2002*).

AIM OF THE WORK

Evaluation of ST segment resolution after reperfusion by thrombolytic therapy as a prognostic predictor of clinical outcome in patients with myocardial infarction.

Chapter (1):

ELECTROCARDIOGRAM IN THE DIAGNOSIS OF MYOCARDIAL ISCHEMIA AND INFARCTION

The electrocardiogram (ECG) is an important and sometimes central tool used to establish the diagnosis of myocardial ischemia or infarction. New abnormalities in the ST segment and T waves represent myocardial ischemia and may be followed by the formation of Q waves. However, the electrocardiogram may be normal or nonspecific in a patient with either ischemia or infarction (*Thygesen et al., 2007*).

The use of the ECG for the diagnosis of myocardial ischemia and myocardial infarction (MI) will be reviewed here. This topic includes important updates on the ECG criteria for myocardial infarction (MI). These changes result from the 2007 Joint European Society of Cardiology/American College of Cardiology Federation/American Heart Association/World Health Federation (ESC/ACCF/AHA/WHF) Task Force, which redefined acute and prior MI and proposed new criteria necessary to secure the diagnosis (table 1) (Thygesen et al., 2007).

Table (1): Definition of myocardial infarction *(Thygesen et al., 2007).*

Criteria for acute myocardial infarction

The term myocardial infarction should be used when there is evidence of myocardial necrosis in a clinical setting consistent with myocardial ischaemia. Under these conditions any one of the following criteria meets the diagnosis for myocardial infarction:

Detection of rise and/or fall of cardiac biomarkers (preferably troponin) with at least one value above the 99th percentile of the upper reference limit (URL) together with evidence of myocardial ischaemia with at least one of the following:

Symptoms of ischaemia

ECG changes indicative of new ischaemia (new ST-T changes or new left bundle branch block [LBBB])

Development of pathological Q waves in the ECG

Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality

Sudden, unexpected cardiac death, involving cardiac arrest, often with symptoms suggestive of myocardial ischaemia, and accompanied by presumably new ST elevation, or new LBBB, and/or evidence of fresh thrombus by coronary angiography and/or at autopsy, but death occurring before blood samples could be obtained, or at a time before the appearance of cardiac biomarkers in the blood.

For percutaneous coronary interventions (PCI) in patients with normal baseline troponin values, elevations of cardiac biomarkers above the 99th percentile URL are indicative of peri-procedural myocardial necrosis. By convention, increases of biomarkers greater than 3 x 99th percentile URL have been designated as defining PCI-related myocardial infarction. A subtype related to a documented stent thrombosis is recognized.

For coronary artery bypass grafting (CABG) in patients with normal baseline troponin values, elevations of cardiac biomarkers above the 99th percentile URL are indicative of peri-procedural myocardial necrosis. By convention, increases of biomarkers greater than 5 x 99th percentile URL plus either new pathological Q waves or new LBBB, or angiographically documented new graft or native coronary artery occlusion, or imaging evidence of new loss of viable myocardium have been designated as defining CABG-related myocardial infarction.

Pathological findings of an acute myocardial infarction.

Criteria for prior myocardial infarction

Any one of the following criteria meets the diagnosis for prior myocardial infarction:

Development of new pathological Q waves with or without symptoms.

Imaging evidence of a region of loss of viable myocardium that is thinned and fails to contract, in the absence of a non-ischaemic cause.

Pathological findings of a healed or healing myocardial infarction.