

SPEEDING-UP FAST FOURIER TRANSFORM

By

Mohammed Ahmed Elmotaz Bellah Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

SPEEDING-UP FAST FOURIER TRANSFORM

By

Mohammed Ahmed Elmotaz Bellah Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Hossam Ali Fahmy

Asst Prof. Omar Ahmed Nasr

professor

Assistant Professor

Electronics and Communications Engineering

Electronics and Communications Engineering

Department

Department

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

SPEEDING-UP FAST FOURIER TRANSFORM

By

Mohammed Ahmed Elmotaz Bellah Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:
Prof. Hossam Ali Fahmy, Thesis Main Advisor
Asst Prof. Omar Ahmed Nasr, Member
Prof. Mohamed Fathy Abu El-Yazeed, Internal Examiner
Prof. Hani Fikry Ragai, External Examiner (Electronics and Communications Engineering department, Faculty of Engineering, Ain Shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Mohammed Ahmed Elmotaz

Bellah Elsayed

Date of Birth: 28/4/1990 **Nationality:** Egyptian

E-mail: maeb28490@gmail.com

Phone: 01142701705

Address: Electronics and Communications

Engineering Department,

Cairo University, Giza 12613, Egypt

Registration Date: 1/10/2012 **Awarding Date:** / /2016

Degree: Master of Science

Department: Electronics and Communications

Engineering

Supervisors:

Prof. Hossam Ali Fahmy Asst Prof. Omar Ahmed Nasr

Examiners:

Prof. Hossam Ali Fahmy (Thesis main advisor)

Asst Prof. Omar Ahmed Nasr (Member)

Prof. Mohamed Fathy Abu El-Yazeed (Internal examiner)
Prof. Hani Fikry Ragai (External examiner)

Title of Thesis:

SPEEDING-UP FAST FOURIER TRANSFORM

Key Words:

Fast Fourier Transform (FFT); CORDIC; SQNR; Single-path Delay Feedback

Summary:

This work proposes HardWare-Friendly FFT (HW-F FFT): a restructuring of radix-r FFT butterfly in order to achieve less area-time-power product compared with the conventional algorithm. Moreover, HW-F FFT allows the use of the unequal-gain CORDIC types without the need of any compensation after them. In one case study, Single-path Delay Feedback (SDF) pipeline architecture is used. Given the same hardware resources, HW-F FFT achieves a substantial increase in the Signal-to-Quantization Noise Ratio (SQNR) performance. The proposed algorithm offers up to 75 dB SQNR gain compared to the conventional FFT for different radix-r FFT sizes when different CORDICs and complex multiplier sizes are employed. In the same case study, if it is required to maintain a certain SQNR level, HW-F FFT achieves less computational area, up to 40% less, compared with the conventional FFT.

Acknowledgments

Foremost, I take this opportunity to express my deep gratitude and appreciation to my advisors Prof. Hossam Fahmy and Dr. Omar Nasr for their continuous help, support, guidance, enthusiasm, patience, and encouragement. I learned a lot from their vision and dedication. I could not have imagine having better advisors.

I want to thank my parents for thier guidance and support. Ahmed, My Father and Huda, My Mother, truely the heaven is underneath your feet.

Finally, I would like to thank my friends who supported me, specially EECE department teaching assistants, through this venture and tried to help me to the best of their abilities.

Dedication

To the beloved ones, who are not here anymore.

Table of Contents

A	cknow	ledgme	ents	i
De	edicat	ion		iii
Ta	ble of	f Conte	nts	v
Li	st of T	Fables		vii
Li	st of I	Figures		ix
Li	st of A	Algorith	nms	xi
Li	st of S	Symbols	s and Abbreviations	xii
Li	st of I	Publicat	tions	XV
Ał	ostrac	t		xvii
1	Intr	oductio	n	1
	1.1	Histor	y	. 2
	1.2	Questi	on Marks	. 3
		1.2.1	From the hardware perspective, is the complex multiplier the most	
			efficient solution to perform rotation?	. 3
		1.2.2	lower bound of the memory size inside the FFT block?	. 4
		1.2.3	What is the fastest FFT?	. 4
		1.2.4	Am I interested?	. 4
	1.3	Organi	ization of the thesis	. 5
2	Lite	rature l	Review	7
	2.1	Review	w of related CORDIC techniques	
		2.1.1	General Concept	. 9
		2.1.2	Conventional CORDIC	. 10
			2.1.2.1 Conventional CORDIC parameters selection criteria .	
			2.1.2.2 Conventional CORDIC implementation	. 12
		2.1.3	MVR-CORDIC	. 12

		2.1.4 EEAS-CORDIC	16
		2.1.5 MSR-CORDIC	18
	2.2	Review of related FFT algorithms	19
		2.2.1 Decimation In Frequency (DIF)	
		2.2.2 Decimation In Time (DIT)	
	2.3	Review of related FFT hardware architecture	21
3	The	Proposed Radix-r FFT: HardWare-Friendly FFT (HW-F FFT)	27
	3.1	Motivation	27
	3.2	The Proposed Radix-2 HW-F FFT	28
		3.2.1 The problem statement	28
		3.2.2 the proposed solution	28
		3.2.3 Exploiting more solution space	33
	3.3	Greedy Radix-r FFT	36
4	Erro	or Analysis	41
_	0-4	instruction Mothedology	49
5	Ծք ս 5.1	mization Methodology Motivation	49
	5.1	A framework to visualize the candidate solutions	
	5.3	k-Nearest Neighbors (k-NN) search technique	
	5.4		
	5.1	voronor bused space partitioning technique	J
6	Eval	uation	59
	6.1	SQNR simulation measurements	59
		6.1.1 CORDIC case comparison	60
		6.1.2 Complex multiplier case comparison	63
	6.2	Hardware performance comparison	66
7	Con	clusion and Future Work	73
	7.1	Global input-independent optimization for angles of rotations	73
	7.2	SNR Adaptive FFT Architecture	74
Re	feren	ces	77
Δ	syno	ppsys design compiler	81
11	A.1	Introduction	81
	A.2		81
	A.3	Setup file	82
		Getting started with Synopsys design compiler	
A	ahia	A hotmost	
AI	anic .	Abstract	

List of Tables

2.1	Hardware performance comparison between different FFT architectures .	25
5.1	Number of candidates examined per butterfly using brute-force search	49
6.1	Hardware-Friendly radix-2 FFT SQNR performance using MVR, EEAS(2,0), and MSR(2,1) in dB	60
6.2	Hardware-Friendly radix-3 FFT SQNR performance using MVR, EEAS(2,0), and MSR(2,1) in dB	61
6.3	Hardware-Friendly radix-4 FFT SQNR performance using MVR, EEAS(2,0), and MSR(2,1) in dB	61
6.4	Hardware-Friendly radix-8 FFT SQNR performance using MVR, EEAS(2,0), and MSR(2,1) in dB	61
6.5	Conventional radix-2 FFT SQNR performance using MSR(2,1) in dB	62
6.6	Conventional radix-3 FFT SQNR performance using MSR(2,1) in dB	62
6.7	Conventional radix-4 FFT SQNR performance using MSR(2,1) in dB	62
6.8	Conventional radix-8 FFT SQNR performance using MSR(2,1) in dB	62
6.9	Hardware-Friendly radix-2 FFT SQNR performance using complex mul-	
	tipliers in dB	64
6.10	Hardware-Friendly radix-3 FFT SQNR performance using complex mul-	
	tipliers in dB	64
6.11	Hardware-Friendly radix-4 FFT SQNR performance using complex mul-	
	tiplier in dB	64
6.12	Hardware-Friendly radix-8 FFT SQNR performance using complex mul-	
	tiplier in dB	65
6.13	Conventional radix-2 FFT SQNR performance using complex multiplier	
	in dB	65
6.14	Conventional radix-3 FFT SQNR performance using complex multiplier	
	in dB	65
6.15	Conventional radix-4 FFT SQNR performance using complex multiplier	
	in dB	66
6.16	Conventional radix-8 FFT SQNR performance using complex multiplier	
	in dB	66
6.17	Hardware performance comparison without equalization	66
6.18	Hardware performance comparison with equalization	67