

Computer Science Department

Faculty of Computer and Information Sciences
Ain Shams University

Intelligent Technique for Computer Virus Detection

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information sciences

To the department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University.

BY MOHAMED MABROUK MAWED MORSEY

B.Sc., Faculty of Computer and Information Sciences, Ain Shams University.

SUPERVISED BY

Prof. Dr. MOSTAFA MAHMOUD SYIAM

Former Vice Dean for Student Affairs, Faculty of Computer and Information Sciences, Ain Shams University.

Prof. Dr. MOHAMED HASHEM

Chairman of the Technical Research and Development Center, Air Defense Forces.

Dr. SHYMAA ARAFAT

Lecturer in Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University.

Cairo - 2006

Acknowledgments

Thanks are due to ALLAH for getting this work done.

I am very grateful for the encouragement of Professor M. Essam Khalifa our faculty dean. Many thanks are given to my Advisors, Professor Mostafa Syiam, Doctor Mohamed Hashem, and Doctor Syhmaa Arafat for their continuous support, and help in all fields of my life and research work. Many work of thesis weren't being done without their valuable comments that helped me to cut many huge technical problems. I want to specially thank Doctor Mohamed Hashem, and Doctor Syhmaa Arafat for their constant support, interest, and encouragement of my work. I learned too much from them and I hope to continue the co-operation with them in following research. In this acknowledgment I should highlight the continuous encouragement and support of Professor Said Ghoniemy. Many thanks are given to everyone who helped me to achieve this work.

List of Figures

2.1 Functional diagram of the virus	9
2.2 The process of loading a .COM program into memory	12
2.3 The structure of a .EXE program	14
2.4 The process of loading a .EXE program into memory	14
2.5 The boot record is located in track 0, head 0, and sector 1	15
2.6 The virus places itself in place of boot record, and	17
saves the original boot record to the last record	1/
2.7 A flowchart indicating the infection process of a boot	18
record virus	10
2.8a An overwriting virus, it overwrites the code of the	20
original program rendering it useless	20
2.8b A prepending virus, it places a copy of itself at the	21
beginning of the program file	<i>L</i> 1
2.8c An appending virus, it places a copy of itself at the	
end of the file and inserts a jump instruction at the	21
beginning of the file	
2.9 The structure of a .EXE file after infection by an	22
appending virus	22
2.10 A flowchart indicating how the stealth read virus works	25
3.1 Typical model of a neuron	32
3.2 The effect produced by the presence of a bias	33
3.3 The graph of the threshold function	34

3.4 The graph of the piecewise-linear function	34
3.5 The graph of the sigmoid function for a varying slope parameter a	35
3.6 A multilayer perceptron network with one hidden layer	36
3.7 A signal flow graph indicating the details of output	38
neuron j	
3.8 A signal flow graph indicating the details of output	41
neuron k connected to hidden neuron j	7.1
3.9 A signal flow graph indicating the back-propagation	43
of error signal	
3.10 A set of data items that are grouped into several	55
disjoint groups	55
3.11 The agent interacts with environment through	58
sensors and actuators	
3.12 A static agent sends its mobile agents to their new	59
host servers.	
3.13 The agent is sent to data source and only important	61
data is sent through the network	
3.14 The stages of the lifecycle of a mobile agent	61
4.1 An illustration of a typical Turing machine	68
5.1 An imaginary example of a viral input vector	82
5.2 An imaginary example of a non-viral input vector	82
5.3 An imaginary example of a 2-dimensional array of	83
feature values for viral and non-viral files	

5.4 The architecture of the neural network classifier	85
5.5 A flowchart describing the entire process of the	87
neural network detector	07
5.6 The effect of changing the number of training	88
samples on the false positive and false negative errors	00
5.7 The effect of changing the number of training	89
samples on the success ratio	
5.8 The effect of the threshold value on the number of	90
errors	
5.9 The effect of the threshold value on the success	90
ratio	
5.10 The effect of changing the number of training	91
samples on the false positive and false negative errors	
5.11 The effect of changing the number of training	92
samples on the success ratio	
5.12 The effect of changing the threshold value on the	93
number of errors (program file viruses)	, -
5.13 The effect of changing the threshold value on the	93
success ratio (program file viruses)	, ,
5.14 Changing the number of training samples affects the	96
number of errors	70
5.15 Changing the number of training samples affects the	97
success ratio	<i>)</i>
5.16 Changing the number of training samples affects the	98

number of errors	
5.17 Changing the number of training samples affects the	98
success ratio	70
5.18 Changing the number of training samples affects the	101
number of errors	101
5.19 Changing the number of training samples affects the	102
success ratio	102
5.20 Changing the number of training samples affects the	103
number of errors	103
5.21 Changing the number of training samples affects the	103
success ratio	103
5.22 Changing the number of training samples affects the	106
number of errors	100
5.23 Changing the number of training samples affects the	106
success ratio	100
5.24 Changing the number of training samples affects the	107
number of errors	107
5.25 Changing the number of training samples affects the	108
success ratio	100
5.26 The structure of the virus detection system	109
5.27A flowchart describing the process of training,	112
moving and testing the agents	114
5.28 The effect of changing the number of training	113
samples on the number of errors	113

5.29 The effect of changing the number of training	11/
samples on the success ratio	114
5.30 Indicates the effect of changing the number of	115
training samples on the number of errors for the method	113
5.31 Indicates the effect of changing the number of	115
training samples on the success ratio of the method	113

List of Tables

2.1 A simple comparison between viruses, Trojan horses,	8
and worms	0
2.2 A simple comparison between .COM, and .EXE files	11
2.3 A simple comparison between the antivirus	30
techniques	30
3.1 Fictional data describing the weather conditions for	50
playing some game	30
3.2 Frequencies of each weather feature value	50
3.3 Probabilities of each weather feature value	50
3.4 A list of some of the available agent platforms	64
5.1 The effect of changing the number of training on the	88
number of false positives and false negatives	00
5.2 The effect of changing the threshold value T on the	89
NN classifier when the number of training samples=15	09
5.3 The effect of changing the number of training on the	91
number of false positives and false negatives	91
5.4 The effect of changing the threshold value T on the	
NN classifier when applied on program viruses (the	92
number of training samples is 50)	
5.5 The effect of changing the number of training samples	
on the performance of the naïve Bayes method when	96
applied on boot record viruses	

5.6 The effect of changing the number of training samples	
on the performance of the naïve Bayes method when	97
applied on program viruses	
5.7 The effect of changing the number of training samples	
on the performance of the multi-naïve Bayes method	101
when applied on boot record viruses	
5.8 The effect of changing the number of training samples	
on the performance of the multi-naïve Bayes method	102
when applied on program viruses	
5.9 The effect of changing the number of training samples	
on the performance of the K-means method when applied	106
on boot record viruses	
5.10 The effect of changing the number of training	
samples on the performance of the K-means method when	107
applied on program viruses	
5.11 The effect of changing the number of training	
samples on the performance of the mobile agent method	113
when applied on boot record viruses	
5.12 The effect of changing the number of training samples	114
on the number of false positives and false negatives	117
6.1 A simple comparison among the intelligent	119
antivirus techniques	11)

Contents

LIST OF FIGURES	xiii
LIST OF TABLE	xviii
1 INTRODUCTION	1
1.1 Motivation	1
1.2 Research Goals	3
1.3 Thesis Outlines	3
2 AN OVERVIEW ON COMPUTER VIRUSES	5
2.1 What is a Computer Virus?	5
2.2 Viruses, Trojan Horses, and Worms	6
2.2.1 Trojan Horses	6
2.2.2 Worms	7
2.3 Computer Virus Components	8
2.4 Types of Computer Viruses	10
2.4.1 Classification of Viruses According to The	10
Type of Host	10
2.4.1.1 Executable File Viruses	11
2.4.1.2 Boot Record Viruses	15
2.4.1.3 Macro Viruses	19
2.4.2 Classification of Viruses According to The Structure	20

2.4.3 Classification of Viruses According to The	22
Method of Infection	22
2.5 Antivirus Techniques	25
2.5.1 Overly Broad Detection	26
2.5.1.1 Activity Monitors	26
2.5.1.2 Integrity Management Systems	27
2.5.2 Overly Specific Detection	27
2.5.2.1 Virus Scanners	28
2.5.2.2 The Determination of The Signature of a Virus	29
3 AN OVERVIEW ON THE APPLIED INTELLIGENT TECHNIQUES	31
3.1 An Overview On Neural Networks	31
3.1.1 The Model of a Neuron	31
3.1.2 Types of Activation Function	33
3.1.3 Multilayer Perceptron Neural Network	35
3.1.4 The Back-Propagation Training Algorithm	36
3.1.5 The Applications of Neural Networks	44
3.2 An Overview On Data Mining	45
3.2.1 Major Tasks of Data Mining	45
3.2.2 Applications of Data Mining	47
3.2.3 Naïve Bayes Method	49
3.2.4 Multi-Naïve Bayes Method	52
3.2.5 K-means Clustering Method	55

3.3 An Overview On Mobile Agents	58
3.3.1 Mobile Agents	59
3.3.2 Why Mobile Agents?	60
3.3.3 The Agent Lifecycle	61
3.3.4 Mobility	62
3.3.5 Judging An Agent	62
3.3.6 The Agent Platforms	63
3.3.6.1 Aglets	64
3.3.6.2 Grasshopper	64
3.3.7 Applications of Mobile Agents	65
4 MODELING COMPUTER VIRUSES	68
4.1 Overview on Turing Machines	68
4.2 The Proposed Mathematical Model	69
4.2.1 The Notation of The Model	69
4.2.2 Trojan Horses	71
4.2.3 The Virus Method	72
4.3 Applying The Framework	73
4.3.1 Viral Resistance	73
4.3.2 Applying the framework on each type of virus	74
4.4 The Proposed Validity of The Model	75
4.5 Detectability of Viruses	77
4.5.1 Cohen's Proof of Undecidability of Virus Detectability	77
4.5.2 Applying Cohen's Proof on The New Framework	79

4.6 Conclusions	79
5 APPLYING THE INTELLIGENT COMPUTER VIRUS DETECTION TECHNIQUES	81
5.1 Feature Extraction	81
5.2 The Proposed Neural Network-Based Virus Detector.	83
5.2.1 Building and Training The Network	84
5.2.2 Results Of Applying The Neural Network-Based Method	87
5.2.2.1 Applying The Neural Network method on Boot Record Viruses	87
5.2.2.1.1 The Effect of Changing The Number of Training Samples	88
5.2.2.1.2 The Effect of Changing The Output Threshold	89
5.2.2.2 Applying The Neural Network method on Program File Viruses.	90
5.2.2.2.1 The Effect of Changing The Number of Training Samples	91
5.2.2.2.2 The Effect of Changing The Output Threshold	92
5.3 The Proposed Data Mining-Based Virus Detector	94
5.3.1 Naïve Bayes Method	94
5.3.1.1 The Algorithm of Naïve Bayes Method	94
5.3.1.2 The Results of Applying The Naïve Bayes Method	95
5.3.1.2.1 Applying The Naïve Bayes Method on Boot Record Viruses.	96

5.3.1.2.2 Applying The Naïve Bayes Method on	97
Program Viruses	<i>)</i>
5.3.2 Multi-Naïve Bayes Method	98
5.3.2.1 The Algorithm of The Method	99
5.3.2.2 The Results of Applying The Multi-Naïve	100
Bayes Method.	
5.3.2.2.1 Applying The Multi-Naïve Bayes Method on	101
Boot Record Viruses	
5.3.2.2.2 Applying The Multi-Naïve Bayes Method on	102
Program Viruses	
5.3.3 K-means Clustering Method	103
5.3.3.1 The Algorithm of The Method	104
5.3.3.2 The Results of Applying The K-Means Method	105
5.3.3.2.1 Applying The K-Means Method on Boot	105
Record Viruses	105
5.3.3.2.2 Applying The K-Means Method on Program	107
Viruses	107
5.4 The Proposed Mobile Agent-Based Viruses Detector.	108
5.4.1 The Structure of Mobile Agent-Based Virus Detector	108
5.4.2 Results of Applying Mobile Agents	112
5.4.2.1 Applying The Mobile-Agent Method on Boot	110
Record Viruses.	112
5.4.2.2 Applying The Mobile-Agent Method on Program File Viruses.	114

5.5 The Conclusions	116
6 CONCLUSIONS AND FUTURE WORK	118
REFERENCES	121