THE ASSOCIATION BETWEEN PENTRAXIN 3 IN MATERNAL CIRCULATION AND INTRAUTERINE GROWTH RESTRICTION: A CASE CONTROL STUDY

Thesis

Submitted for partial fulfillment of MD degree in Obstetrics and Gynecology

Presented by Rehab Mohamed Abd El Rahman

M.B., B.Ch. Ain Shams University 2006 M.Sc. OB/GYN Ain Shams University 2010

Under Supervision of

Prof. Essam-Eldin Mohamed Ammar

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Prof. Ahmed Ramy Mohamed Ramy

Professor of Obstetrics and Gynecology
Faculty of Medicine - Ain Shams University

Dr. Mostafa Ibrahim Ibrahim

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First and foremost, I would like to thank ALLAH, the Compassionate and the Merciful, for helping me finish this work, and for blessing me throughout my life by His Compassion and Generosity

It is a pleasure to thank those who have made this thesis possible.

Words fail to express my great indebtedness to **Professor Dr. Essam Ammar** Professor of Obstetrics and Gynecology, Ain Shams University, whose scientific guidance, continuous supervision, advice and fruitful criticism has enabled me to complete this work.

Likewise, I would like to thank my supervisor, Professor Dr. Ahmed Ramy, Professor of Obstetrics and Gynecology, Ain Shams University, for his valuable instructions, inspiring guidance and support throughout this work

I find no words by which I can express my deepest thanks and gratitude to my honored Associate Professor Dr Moustafa Ibrahim, Associate Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his practical help and advice, and for making my thesis experience a productive one.

I would like to express my sincere appreciation to **Dr.**Mohamed Ibrahim Ellithy, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University and **Dr. Rania Kabariti**, Associate professor of clinical pathology, Faculty of Medicine, Ain Shams University, for their support, effort, guidance and advice throughout the entire work.

Lastly, and very importantly, I am forever indebted to my parents, my brother. Without their support, encouragement and understanding, this thesis would not have been possible.

This work was financially supported by Ain Shams Faculty of Medicine "Grants Office".

Rehab Mohamed Abdel Rahman

LIST OF CONTENTS

Title	I	Page No.
List of tables		i
List of figures	3	ii
	viations	
Introduction.		1
Aim of the Wo	ork	3
Review of Lite	erature	
Chapter (1): I	ntrauterine Growth Retardation	4
1.1 Etiology	y:	5
1.2 Diagnos	sis:	8
1.3 Role of I	Doppler Ultrasound in diagnosis of IUGR:	12
1.4 Doppler	ultrasound measurements:	16
1.5 Uterine	artery Doppler ultrasound:	18
Chapter (2): I	Pentraxin-3 (PTX-3)	23
2.1 Introdu	ction:	23
2.2 Chemic	al Structure:	24
2.3 Gene Re	egulation:	25
2.4 Mechan	ism of Action:	27
2.5 Biologic	eal Functions of Pentraxin-3	27
2.5.1.		
2.5.2.		28
2.5.3.	Role of PTX-3 in fertility	30
2.5.4.	Role of PTX-3 in Pregnancy	30
2.6 Clinical	Utility of Pentraxin-3	30
2.6.1.	Pentraxin-3 in Atherosclerosis and	
	Cardiovascular Disorders	30
2.6.2.	Pentraxin-3 in Chronic Kidney Disease	
	(CKD)	31
2.6.3.	Pentraxin-3 in Autoimmune Disorders	
2.6.4.	Pentraxin-3 in Lung Cancer	
2.6.5.	Pentraxin-3 in Inflammation and Infect	ion 34
2.6.6	Pentraxin-3 in Pre-eclampsia	34
2.6.7.	Pentraxin-3 in Intrauterine Growth	
	Restriction (IUGR)	35

2.7 Assay of Pe	ntra	xin-3	36
2.7.1 En	zym	e-linked immunosorbent assay	
(EI	LĪS <i>A</i>	a)	36
2.7.	1.1	Sample specification	36
2.7.	1.2	Principle of assay	37
2.7.	1.3	Performance characteristics	38
2.7.2 We	ster	n blot analysis	38
2.7.	2.1	Sample specification	38
2.7.	2.2	Principle of assay	38
2.7.	2.3	Performance characteristic	39
2.7.3 Ser	ni-q	uantitative reverse transcriptase	
pol	yme	rase chain reaction (RT-PCR)	39
2.7.	3.1	Principle of assay	39
2.7.	3.2	Performance characteristic	41
Chapter (3): PTX3	as	a marker in human pathology	42
3.1 Implantation	n an	d inflammatory networks:	42
3.2. PTX3 as a r	narl	xer in human pathology:	45
Materials and met	thod	s	49
Results			53
Discussion			59
Summary			63
Conclusion			65
References			66

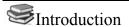
LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Condition Associated with Intrauterine Retardation	
Table (2):	Comparison between women with and IUGR	
Table (3):	Comparison of receiver-operating chara (ROC) curves for diagnosis of IUFGF pentraxin 3 and multiple logistic regression	R using
Table (4):	Multiple logistic regression model for diag	

LIST OF FIGURES

Figure No.	Title	Page No.
Figure (1):	Structure of first trimester placental villi	13
Figure (2):	Anatomy of the maternal-fetal interface	14
Figure (3):	Doppler indices. (S) peak systolic frequency shift (D) end diastolic frequency shift	17
Figure (4):	(A) Normal flow velocity waveform from the uterine artery at 24 weeks of gestation.(B) Flow velocity waveform from the uterine artery at 24 weeks of gestation in a pregnancy with impaired placentation	19
Figure (5):	Changes in Umbilical Doppler waveforms in healthy pregnancies and in pregnancies with fetal growth restriction	21
Figure (6):	Structural organization of short and long pentraxins	25
Figure (7):	Steps of PCR	40
Figure (8):	PTX3 expression in human placenta and decidua	48
Figure (9):	Participants flow diagram.	53
Figure (10):	Boxplot showing pentraxin 3 level in both study groups.	55
Figure (11):	Comparison of receiver-operating characteristic (ROC) curves for pentraxin 3 and the multiple logistic regression model for prediction of IUGR	58

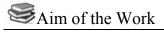
LIST OF ABBREVIATIONS


Abbreviations	Full term
	Arteria umbilicalis
a.uterinae	Arteriae uterinae
	Abdominal circumference
AFI	Amniotic fluid index;
AMI	Acute myocardial infarction
AUC	Area under the curve
BMI	Body mass index
BPD	Biparietal diameter
CI	Confidence Interval
COC	Cumulus oophorus cells in ovary
CRP	C-reactive protein
CS	Caesarean section
DCs	Dendritic cells
ECM	Extracellular matrix
ECs	Endothelial cells
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
FGR	Fetal growth restriction
FL	Femur length
GA	Gestational age
HIV	Human immunodeficiency virus
IUFGR	Intrauterine fetal growth restriction
IUGR	Intrauterine growth restriction
LPS	Lipopolysaccharide
	Minimum detectable limit
NK	Natural killer
NPTXI	Pentraxin I
NPTXII	
NSCLC	Non-small cell lung cancer
	Outer membrane proteins
OR	Odds ratio
	Polymerase chain reaction
	Pulsatility index
	Polymorphonuclear cells
PTX3	Pentraxin 3

RIResistance index		
ROC Receiver-operating characteristic curve		
RT-PCRReverse transcriptase polymerase chain reaction		
S/D ratio Systolic to diastolic ratio		
SAPSerum amyloid P-component		
SCLCSmall cell lung cancer		
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel		
electrophoresis		
SGA Small for gestational age		
TGF-αTissue growth factor-alpha		
TIMPsTrophoblasts and their inhibitors		
TLRToll-like receptor		
TNF-α Tumor necrosis factor-α		
TSG-14TNF-stimulated gene		
UA-RI Umbilical artery resistance index		
UA-RIUmbilical artery resistance index		
USUltrasound.		
VEGFVascular Endothelial Growth Factor		

Introduction

The term, small for gestational age (SGA) fetus, describes that fetus with growth parameters below the 10th percentile. This term cannot differentiate between physiological and pathological smallness, distinction necessitates the assessment of the fetal growth potential. Intrauterine growth restriction (IUGR) describes the fetus who failed to reach its growth potential because of genetic and/or environmental causes. This term is not designated to describe a constitutionally small, but otherwise healthy fetus^[1]. It is essential to differentiate between a SGA fetus and a fetus with IUGR, as the latter is at risk for serious short and long term consequences while the earlier is not at high risk of perinatal mortality or morbidity if it is simply small because of constitutional elements^[2].


Pentraxin 3 (PTX3) is a well-known long pentraxin produced by many cells (epithelial cells, endothelial cells, fibroblasts, monocytes, polymorphonucelar leucocytes, macrophages, and dendritic cells)^[3,4]; it plays an essential role in female fertility, innate immunity, and inflammation. Recently, the role of PTX3 has been investigated in normal pregnancy, preeclampsia, intrauterine growth restriction, preterm labor, premature rupture of fetal membranes;

intraamniotic inflammation, recurrent miscarriage and implantation disorders^[5,6].

Antenatal diagnose of placental IUGR is challenging, the presence of an easily accessible marker in the maternal circulation, would help to classify SGA foetuses into high and low risk groups. Women with IUGR have increased PTX3levels associated with altered placentation; however, this finding warrants further investigation^[7]. The aim of the current study was to compare the circulating PTX3 levels in pregnant women with and without IUGR.

,

${f A}$ IM OF THE ${f W}$ ORK

The aim of this study is to show the association between maternal circulating PTX3 level in normal pregnant women and those with IUGR.

3 -----

Chapter One

Intrauterine Growth Retardation

istinguishing the constitutionally small fetus from the growth restricted fetus is a complex diagnostic and management problem, but is important. A constitutionally small fetus achieves its normal growth potential and has a good prognosis whereas the fetus whose growth potential is restricted is at increased risk of perinatal morbidity and mortality^[1]. Fetal growth restriction (FGR) that results from intrinsic fetal factors such aneuploidy, as congenital malformations, and fetal infection carries a guarded prognosis that often cannot be improved by any intervention. FGR related to uteroplacental insufficiency has a better prognosis, but is still associated with an increased risk of adverse outcome^[4].

The common definition of intrauterine growth retardation (IUGR) is a birth weight under the 10th Percentile.

Most authorities prefer to maintain the strict and more inclusive definition of IUGR as birth weight less than 10 percent of predicted fetal weight for gestational age. Using the 10th percentile as a standard result in overdiagnosis of IUGR. Other authors, however, have suggested using the 5th percentile to define IUGR infants^[2]. The counter argument in favor of a strict definition is that birth weight is probably the

Δ ____

single most important factor affecting neonatal morbidity and mortality and should be aggressively screened for. A lack of consensus among perinatologists makes it difficult to fully define the extent of IUGR and the subsequent effectiveness of interventions^[2].

1.1 Etiology:

Table (1): Condition Associated with Intrauterine Growth Retardation

Medical	Maternal	Infectious	Congenital
Chronic hypertension	Smoking	Syphilis	Trisomy 21
Preeclampsia early in gestation	Alcohol use	cytomegalovirus	Trisomy 18
Diabetes mellitus	Cocaine use	Toxoplasmosis Rubella	Trisomy 13
Systemic lupus erythermatosus	Warfarin (Coumadin,Panwarfin)	Hepatitis B	Turner's syndrome
Chronic renal disease	Prior history of pregnancy with intrauterine growth retardation	HSV-1 orHSV-2	
Inflamatory bowel disease	Resting at altitude above 5,000 feet		
Severe hypoxic lung disease			

HSV = Herpes simplex virus, **HIV**= Human immunodeficiency virus. Information from references 1 and 3

Historically, IUGR has been categorized as symmetric or asymmetric. Symmetric IUGR refers to fetuses with equally poor growth velocity of the head, the

abdomen and the long bones. Asymmetric IUGR refers to infants whose head and long bones are spared compared with their abdomen and viscera. It is now believed that most IUGR is a continuum from asymmetry (early stages) to symmetry (late stages)^[6].

Maternal causes of IUGR account for most uteroplacental cases. Chronic hypertension is the most common cause of IUGR. Moreover, the infants of hypertensive mothers have a three-fold increase in perinatal mortality compared with infants with IUGR who are born of normotensive mothers. Because of their significant risk, one author recommends delivering these infants by 37 weeks of gestational age^[4].

Preeclampsia causes placental damage that results in uteroplacental insufficiency. The pathogenic mechanism is thought to be a failure of trophoblastic invasion by maternal spiral arterioles by 20 to 22 weeks of gestation. This failure causes luminal narrowing and medial degeneration, leading to diminished blood flow to the developing infant. Consequently, these infants fail to grow normally^[5].

Infectious causes of fetal growth delay account for about 10 percent of all cases of IUGR. These causes include the "TORCH" group: Toxoplasma gondii, rubella, cytomegalovirus and herpes simplex virus types 1 and 2.