

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

OF LEFT MAIN CORONARY ARTERY STENTING 6169 123

Submitted for Partial Fulfillment for M.D. Degree In Cardiovascular Medicine

DR. HOSAM EL-DEEN EBRAHIEM EL DSOUKY

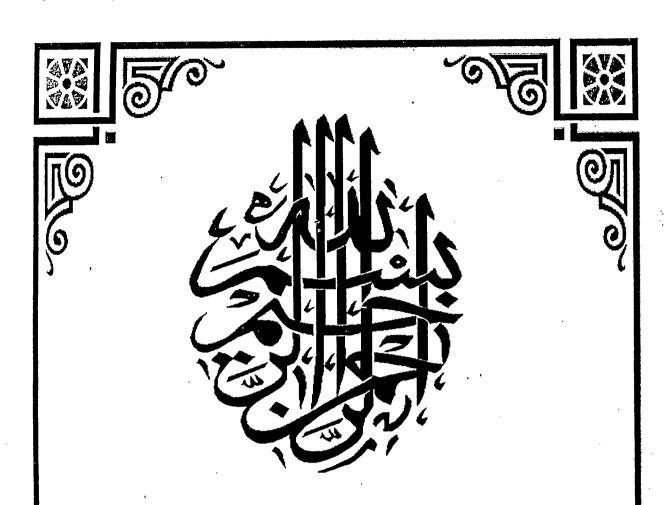
Under Supervisors of

DR. AHMED ABD EL MONEIM

Prof. of Cardiology and head of Cardiac department
Benha Faculty of Medicine
Zagazig University

DR. EL SYAED ABD EL KHALEK

Assist. Prof. of Cardiology Benha Faculty of Medicine Zagazig University


DR. GAMAL ABUELNASR

Prof. Of Cardiology national Heart Institute

DR. METWALLY EL EMARY

Assist. Prof. of Cardiology Benha Faculty of Medicine Zagazig University

Benha Faculty of Medicine
Zagazig University
2005

وقل رب زطنی علماً ﴾

مدق الله العظيم

سورة طه آية رقم "١١٤"

My profound gritude and appreciation are to **Prof. Dr. Ahmed Abdel Moneim,** professor of cardiology and head of cardiac department,
Benha university for his instructive supervision, sincere support, patience
and unlimited encouragement that were indeed the main support to me
throughout this study.

I wish to express may deep respect and thanks to **Dr. Gamal**Abuelnasr, Assistant Prof. Cardiology, National heart institute for his kind supervision and thoughtful suggestions.

I'm also, grateful to **Dr. El Sayaed abd El Khalek,** Assistant Prof. Of cardiology, Benha University for his generous advice and valuable comments. My sincere thanks to Dr. Metwally el Emary, Assistant Prof. of Cardiology, Benha University, for his abundant support and guidance in proceeding forward in my work.

I'm also indebted to every one who assisted in this work

CONTENTS

Introduction	1
Aim of the work	2
Review of literature	
- Anatomy of the left main coronary artery.	3
- Incidence and causes of LMCA disease	9
- Identification of the LMCA disease by non-invasive	
method	13
Clinical presentation	13
Electrocardiography	16
Echocardiography	19
Electron – beam computed tomography	29
• SPECT	30
- Diagnosis of LMCA disease by invasive methods	32
Coronary angiography	32
Intravascular ultrasound (IVUS)	45
- Prognosis of LMCA disese	52
- Percutaneous- catheter- based therapeutic modalities for	
LMCA disease	55
Percutaneous transluminal coronary angioplasty	
PTCA)	55
LMCA stenting	60
• Role of new devices in the treatment of LMCA disease	66
- Surgical management of LMCA disease	88
- LMCA disease surgery or angioplasty	95
Patients and Methods	101
Statistical analysis	112
Results	113
Discussion	146
Summary	155 157
Conclusions	
References	
Arabic summary	

ABBREVIATION

AMI : Acute myocardial infarction

CASS : Coronary artery surgery study

D1 : First diagnosal artery

DCA : Directional coronary atherectomy

DES : Drug eluting stent

EF : Ejection fraction

IABP : Intra aortic balloon pump

IMA : Internal mammary artery

IVUS : Intravasculr ultrasound

LAD : Left anterior descending artery

LCX : Left circumflex artery

LM : Left main

LMCA : Left main coronary artery

LMCAD : Left main coronary artery disease

LMS : Left main stem

LMT : Left main trunk

LV : Left ventricle

MACE : Major adverse cardiac events

MI : Myocardial infarction

 OM_1 : Obtuse marginal

PCI : Percutaneous coronary intervention

PTCA: Percutaneous transluminal coronary angioplasty

QCA : Quantitative coronary angiography

RCA : Right coronary artery

TEE : Transesophageal echocardiography

TLR : Target lesions revascularization
TTE : Trans thoracic echocardiography

ULMT : Unproected left main trunk

LIST OF TABLE

Table No.	Title	Page
1	Distribution of clinical & angiographic variables	114
	among the study groups.	
2	Number and percentage of outcome of cases.	117
3	ECG findings of the study groups.	118
4 ~	Echocardiographic findings of the study groups.	119
5	Distribution of the study group according to risk	120
	factors and outcome	
6	Distribution of the study group according to the site of	123
	lesion and outcome	
7	Distribution of the study group according to presence	125
	or absence of LMCA protection and outcome.	
8	Mean and standard deviation of post-operative	126
	stenosis % among the study group according to	
	outcomes	
9	Mean and standard deviation of post-operative stenosis	127
	% according to outcomes of cases.	
10	Mean and standard deviation of length of lesion	129
	according to outcomes of the study groups.	
11	Mean and standard deviation of the EF according to the	131
	outcome of the study groups.	
12	Distribution of the study groups according to	133
	outcomes and the use of direct stenting.	
13	Distribution of the study groups according to outcome	135
	and use of DES.	

LIST OF FIGURES

Fig. No.	Title	Page
Fig. 1,2 and 3	and of origin of Livica from main	8
	pulmonary artery	
4	Color transthoracic Doppler echocardiography of	21
	LMCA	
5	2 Dchordiogram of LMCA obstruction	21
6	TEE of LMCA with its bifurcation	24
7	TEE and corresponding coronary angiogram of	24
	LMCA stenosis.	
8	TEE of normal LMCA.	25
9	Angiogram of LMCA stenosis.	35
10	Angiogram of ostial LMCA narrowing.	35
11	Cineangiographic frame and photomicrography of	38
	histological section of LMCA.	!
12	Angiogram of collateral channels between RCA and	42
	left coronary system.	
13	Diagrammatic illustration of collateral vessels patterns	42
	in case of complete LMCA occlusion.	
14	IVUS of normal LMCA.	47
_c 15	Angiogram & corresponding IVUS of LMCA.	47
16	Angiogram & corresponding IVUS of LMCA disease.	48
	Coronary angio and f	137-140
	Coronomy and in a constant	141-143
	Coronaviancia	144-145

LIST OF GRAPHS

Chart No.	Title	Page
l	Distribution of the study group according to clinical variables.	116
2	Outcomes of the cases according to sex.	121
3	Outcome of cases according to risk factors.	122
4	Outcomes of cases according to site of lesion & protection.	124
. 5	Means and SD of stenosis % pre and post- operative	128
6	Outcomes according to length of lesions	130
7	Outcomes of cases of according to EF	132
8	Outcome of cases according to stenting	134
9	Outcome of cases according to DES	136

Introduction

INTRODUCTION

In the early days of percutaneous transluminal coronary angioplasty (PTCA), Anadreas Gruentzig used the procedure to treat unprotected left main caronary artery (LMCA) stenoses in a few patients (Gruentzig, 1978).

This practice was promptly stopped, however, because of its poor result and because of the publication of several surgical series demonstrating longer survival times after surgical revascularization compared with nonsurgical treatment in patients with LMCA disease (Caracciolo et al., 1995).

Subsequently, a number of interventional cardiology groups also reported disappointing outcomes after balloon angioplasty alone in LMCA stenosis: there was substantial perioperative mortality, restenosis rates were high, and long term survival rates were unsatisfactory (O'keefe et al., 1989).

However, the explosive growth of coronary stenting in the 1990s, fueled in part by the dramatic reduction in thrombotic complications provided by ticlopidine therapy (Barragan et al., 1994) and by evidence that stenting reduced postangioplasty restenosis rates, prompted, new attempts at LMCA dilation (Macaya et al., 1992).

Since 1993, angioplasty with stenting was offered to all patients with LMCA stenoses (Silvestri et al., 2000).