

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المناد من ٢٠-٥٠ منوية ورطوية نسبية من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٠٤% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ZAGAZIG UNIVERSITY BANHA BRANCH FACULTY OF ENGINEERING - SHOUBRA

Strengthening Of Concrete Members

BY

KHALED MAHMOUD AHMED MAHMOUD

M. Sc. – Structural Engineering 1997- Ain Shams University High diploma - Geotechnical Engineering 1990- Ain Shams University B. Sc. Civil Engineering 1987 - Ain Shams University

A Thesis

Submitted To Faculty Of Engineering - Shoubra, Zagazig University - Banha Branch In Fulfillment For The Requirements Of The Degree Of

Doctor of Philosophy

In Civil Engineering
Department of Civil Engineering

Cairo - Egypt 2004

W Cay 7 8

Strengthening Of Concrete Members

BY

KHALED MAHMOUD AHMED MAHMOUD

M. Sc. – Structural Engineering 1997- Ain Shams University High diploma - Geotechnical Engineering 1990- Ain Shams University B. Sc. Civil Engineering 1987 - Ain Shams University

A Thesis

Submitted To Faculty Of Engineering - Shoubra,
Zagazig University — Banha Branch
In Fulfillment For The Requirements
Of The Degree Of Doctor Of Philosophy
In Civil Engineering
Department Of Civil Engineering

Supervised By

Prof. Dr. Assem Mostafa Kamal Abd-Elaleem

Professor of Material Properties
Department of Civil Engineering
Faculty of Engineering - Shoubra
Zagazig University - Banha Branch

Dr. Mohamed O. R. El-Hariri

Assoc. Prof. of Material Properties Department of Civil Engineering Faculty of Engineering - Shoubra Zagazig University - Banha Branch

Dr. Ehab Foad Ibrahim

Assist. Prof. of R.C. Structures Reinforced Concrete Department Housing & Building Research Center H.B.R.C.

Cairo - Egypt

ZAGAZIG UNIVERSITY BANHA BRANCH -FACULTY OF ENGINEERING - SHOUBRA

APPROVAL SHEET

Thesis

: Doctor of Philosophy in Civil Engineering

Name

: Khaled Mahmoud Ahmed Mahmoud

Thesis Title

: Strengthening Of Concrete Members (Square Columns)

Examiners Committee:

Prof. Dr. Samir Hasan Okba

Professor of Material Properties, Faculty of Engineering, Ain Shams University

Prof. Dr. Mohamed Nasser Darwish

Professor of RC Structures, Faculty of Engineering, Alexandria University

Supervisors Committee:

Prof. Dr. Assem Mostafa Kamal Abd-Elaleem

Professor of Material Properties Faculty of Engineering - Shoubra Zagazig University - Banha Branch

Dr. Mohamed Osama Ramadan El-Hariri

Associate Professor of Material Properties Faculty of Engineering - Shoubra Zagazig University - Banha Branch

Dr. Ehab Foad Ibrahim

Assistant Professor of RC Structures Reinforced Concrete Department Housing & Building Research Center (H.B.R.C) Signature

M. N. Dolars

M.O. lamaskas

A. Abdil.

E. F. Ibrahim

ZAGAZIG UNIVERSITY BANHA BRANCH FACULTY OF ENGINEERING - SHOUBRA

Abstract of the Ph.D. Thesis Submitted by

Eng./ Khaled Mahmoud Ahmed Mahmoud

Title of the Thesis:

STRENGTHENING OF CONCRETE MEMBERS

Supervisors:

Prof. Dr. Assem Mostafa Kamal Abd-Elalim Dr. Mohamed O. R. El-Hariri Dr. Ehab Foad Ibrahim

ABSTRACT

Confinement of concrete is an effective way for strengthening of concrete members, especially columns. The behaviour of strengthened concrete columns wrapped by Fibre Reinforced Polymer composite (FRP) sheets opens the way to new powerful strengthening technique. Square and rectangular-section columns were found to experience less increase in strength and ductility than their circular counterparts when wrapped with FRP because the distribution of lateral confining pressure varies from a maximum at the corners to a minimum in between. Most of the recent researches on non-circular concrete columns concluded that increasing the stiffness of the FRP wrapping is a promising way to increase the wrapping efficiency. To improve the effectiveness of wrapping, a sandwich-wrapping method is used in this research. Sandwich wrapping consisted of wrapping the column with two layers of FRP, inner and outer, separated by an incompressible material as filling material. Acrylic plates were used as filling material between FRP sheets. Twelve square RC columns with dimensions 200X200X1500 mm were tested. Two columns were considered as control specimens while the remaining ten columns were strengthened with different wrapping schemes. The effectiveness of the sandwich wrapping system was investigated either in straps or full wrapping. The variables of the study were: the method of wrapping; percentage of wrapping; thickness of acrylic plates and type of wraps (Glass FRP or Carbon FRP). The number of layers was kept constant as two layers, except for one column where another layer was added to examine its effect on the column performance. The use of sandwich wrapping greatly enhanced the maximum axial load capacity of the columns. The ductility of the sandwich wrapped specimens also was higher than regular wrapped specimens; thus proves that using sandwich technique improves the behaviour of rectangular RC columns under axial loads. A model was proposed to describe the stress-strain behaviour of confined square or rectangular RC columns. The proposed model is suitable for different wrapping configurations including regular and sandwich wrapping. The results of the model showed good agreement with experimental tests results. The model also showed good agreement with several other available test results considering different columns aspect ratios, straps or full wrapping, different types of FRP types (Carbon, Aramid and Glass)

Keywords: Concrete, Confinement, Column, FRP, Strengthening, Jacket

ACKNOWLEDGMENT

It is a pleasure to acknowledge the efforts of all those who have helped in completing this thesis.

The author gratefully acknowledges *Fyfe* Company in U.S.A. particularly *Mr. Edward Donnelly* for donating the *TYFO S* Fiber wrap materials needed in this research and *Mrs. Sarah Cruickshank* for her positive support and continuous feeding with needed technical information for wrapping.

It is a pleasure to express my deepest gratitude and appreciation to *Prof. Dr.*Assem Mostafa Kamal Abd-Elaleem Professor of Material Properties Department of
Civil Engineering Faculty of Engineering — Shoubra - Zagazig University - Banha
Branch for his valuable advice and encouragement throughout this thesis.

I would also acknowledge gratefully *Dr. Mohamed Osama Ramadan El-Hariri*, Associate Professor of Material Properties Department of Civil Engineering Faculty of Engineering – Shoubra - Zagazig University - Banha Branch, for his continuing professional guidance throughout this research.

I would like to express my deep gratitude and thanks to *Dr. Ehab Foad Ibrahim* Assist. Prof. of R.C. Structures, Reinforced Concrete Department, Housing & Building Research Center (H.B.R.C.) for his simulating supervision, guidance and sincere efforts, which are reflected in much of the material of this thesis, and his helpful advice which contributed significantly in the creating research line for the author.

The support from the technical staff at the Housing and Building Research Center (H.B.R.C.) including *Prof. Dr. Omaima Salah Eldin* and *Dr. Yehia Abd Elmegeed* is gratefully appreciated.

I shall be always grateful to *My wife* for her support and patience throughout this study. My education would never have been possible without the continued encouragement and support of my *Parents*, I shall be always thankful to them.

STATEMENT

STATEMENT

This thesis submitted to Zagazig university - Banha branch for the degree of

Doctor of Philosophy in Civil Engineering.

The analytical work included in this work was carried out by the author in the

Department of Civil Engineering Faculty of Engineering - Shoubra - Zagazig

University Banha branch, from January 2001 to August 2004.

The experimental work included in this work was carried out by the author in

the Reinforced Concrete Laboratory of Housing & Building Research Center

(H.B.R.C.), from January 2001 to August 2004.

No part of this thesis has been submitted for a degree or qualification at any

other university or institute.

Date

: 31/8/2004

Signature: Add

Name

: Khaled Hahmoud A.

iv

TABLE OF CONTENTS

	Approval Sheet	i
	Abstract	ii
	Acknowledgement	iii
	Statement i	iv
	Table of Contents	ν
	List of Notationsx	ίi
	List of Tablesxv	/ii
	List of Figuresx	ίX
1	INTRODUCTION	1
	1.1 General	1
	1.2 Objective	3
	1.3 Scope and Contents	5
	1.3.1 Experimental Investigation	. 5
	1.3.2 Analytical study	6
	1.3.3 Summary, Conclusions and Future work	6
2	LITERATURE REVIEW	8
	2.1 Introduction	8
	2.2 Concrete Confinement	
	2.2.1 Effectiveness of Concrete Confinement	9
	2.3 Fibre Reinforced Polymers or Plastics (FRP)	10
	2.3.1 Definition of FRP	10
	2.3.2 History of FRP	l 1
	2.3.3 Fibre Properties	12
	2.3.3.1 Glass Fibre	12
	2.3.3.2 Carbon Fibre	13
	2.3.3.3 Aramid Fibre	
	2.3.3.4 Matrix Properties	
	2.3.4 Production of FRP	15
	2.3.5 Physical and mechanical properties	15

2.3.5.1 Specific gravity	16
2.3.5.2 Thermal expansion	16
2.3.5.3 Tensile strength	16
2.3.5.4 Tensile elastic modulus	17
2.3.5.5 Creep and creep rupture	17
2.3.5.6 Fatigue	17
2.3.5.7 Durability	17
2.3.5.8 Ductility	18
2.3.6 Factors affecting mechanical properties	18
2.3.6.1 Moisture	18
2.3.6.2 Fire resistance and temperature	19
2.3.6.3 Accelerated aging	19
2.3.6.4 Corrosion	19
2.3.6.5 Ultraviolet rays	20
2.3.7 APPLICATION OF FRP	20
2.3.7.1 Low Electric Conductivity and Electromagnetic Transparency	
Applications	20
2.3.7.2 Using FRP in Civil Engineering	21
2.3.7.2.1 Rehabilitation and Retrofitting Applications	21
2.3.7.2.2 Applications Subjected To Aggressive Environments	22
2.3.7.2.3 Applications in Construction	23
2.4 Strengthening Of Concrete Columns Using Concrete Jackets	24
2.4.1 Traditional Concrete Jackets	24
2.4.1.1 Effect of stress level in the original column	25
2.4.2 Confinement of Reinforced Concrete Columns	25
2.4.2.1 Confinement Using Steel Hoops	26
2.4.2.2 Confining concrete columns using steel jackets	28
2.4.2.3 Strengthening of Plain Concrete Cylinders and Prisms Using FRP	30
2.4.2.4 Strengthening of R.C. Cylinders and Prisms by FRP	38
2.4.2.5 Strengthening of Reinforced Concrete Columns by FRP	40
2.4.2. \$\text{G}_{\text{constraint}}\$	40

3	EXPEREMENTAL PROGRAM	56
	3.1 General	56
	3.2 Parameters of study	. 56
	3.3 Specimens Overview	. 56
	3.3.1 Columns' concrete dimensions and reinforcement	. 56
	3.3.2 Strengthening of columns	. 57
	3.4 Columns' Designation System	. 58
	3.5 Properties of the Used Material	. 60
	3.5.1 Concrete	. 60
	3.5.1.1 Coarse Aggregate	. 60
	3.5.1.2 Fine Aggregate	. 60
	3.5.1.3 Cement	. 60
	3.5.1.4 Water	. 61
	3.5.1.5 Mix Design	. 61
	3.5.2 Steel Reinforcement	. 61
	3.5.2.1 Longitudinal Bars	. 61
	3.5.2.2 Horizontal Stirrups	. 61
	3.5.3 Fibre Reinforced Polymers (FRP) Sheets	. 61
	3.5.3.1 E-Glass Fibre sheets	. 61
	3.5.3.2 Carbon Fibre sheets	. 62
	3.5.4 Epoxy	. 63
	3.5.5 Fumed Silica	. 64
	3.5.6 Acrylic Plates	. 64
	3.6 Casting and Curing	. 65
	3.6.1 Moulds	. 65
	3.6.2 Casting	. 65
	3.6.3 Curing	. 66
	3.7 Quality control specimens testing	. 66
	3.8 Columns' Strengthening	
	3.8.1 Surface preparation	. 67
	3.8.2 Preparing Epoxy and Sheets	
	3.8.3 Applying Epoxy prime on concrete surface	
	3.8.4 Regular Wrapping	. 67

3.8.4.1 Wrapping of the first layer (inner layer)	68
3.8.4.2 Wrapping of the second layer	
3.8.5 Sandwich Wrapping	68
3.8.5.1 Preparing of acrylic plates	68
3.8.5.2 Preparing Epoxy prime and fixing acrylic plates	69
3.8.5.3 Preparing Epoxy mortar and corner rounding	69
3.8.5.4 Wrapping outer layer	69
3.9 Strengthening of the column's head	69
3.9.1 Steel collar	69
3.9.2 Head wrapping	70
3.10 Instrumentation	70
3.10.1 Axial Load measurements	70
3.10.2 Longitudinal Displacement Measurements	70
3.10.3 Lateral Displacements Measurements	71
3.11 Test Setup and Test Procedure	71
3.11.1 Test Setup	71
3.11.2 Test procedure	72
3.11.3 Test ending	72
4 EXPEREMENTAL RESULTS	
4.1 General	
4.2 Axial Load-Strain Relationship	90
4.2.1 General	90
4.2.2 Control Columns R1 and R2	90
4.2.3 Columns Strengthened with Regular FRP Straps	91
4.2.3.1 Column G-S-2-00	
4.2.3.2 Column C-S-2-00	92
4.2.4 Columns Strengthened with Regular Full FRP Wrapping	; 92
4.2.4.1 Column G-F-2-00	92
4.2.4.2 Column C-F-2-00	93
4.2.5 Columns Strengthened with Sandwich FRP Straps	
4.2.5.1 Column G-S-2-10	93
4.2.5.2 Column G-S-3-10	
4.2.5.3 Column C-S-2-10	