AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

STRUCTURAL ENGINEERING DEPARTMENT

BEHAVIOR OF STATICALLY DETERMINATE PRESTRESSED CONCRETE BEAMS SUBJECTED TO FIRE

By

Eng. Anwar Mahmoud Mohamed Ismail

B.Sc. Civil Engineering -Helwan University, 2001

M.Sc. Civil Engineering -Helwan University, 2006

A Dissertation

Submitted in Partial Fulfillment for Requirements of the Degree of Doctor of Philosophy in Structural Engineering

Supervisors

Prof. Dr. Amr Ali Abdelrahman

Professor of Concrete Structures Faculty of Engineering, Ain Shams University

Prof. Dr. Nadia M. Noufal

Professor of Properties and Testing of Materials, Housing and Building National Research Center

Assoc.Prof. Ahmed Hassan Ghallab

Associate Professor, Structural Engineering Department, Faculty of Engineering, Ain Shams University

Dr. Tamer Hassan K. El-Afandy

Assistant Professor of Reinforced Concrete, Housing and Building National Research Center

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

APROVAL SHEET

Thesis: Degree of Doctor of Philosophy in Structural Engineering

Thesis Title: "Behavior of Statically Determinate Prestressed Concrete Beams Subjected to Fire"

By: Eng. Anwar Mahmoud Mohamed

Examiners Committee:	SIGNATURE
Prof. Dr. Khalid A. Soudki	
Professor and Canada Research Chair in Innovative Structural Rehabilitation, Department of Civil and Environmental Engineering, Waterloo University, Canada	
Prof. Dr. Ahmed Sherif Essawy	
Professor of Concrete Structures Faculty of Engineering, Ain Shams University	
Prof. Dr. Amr Ali Abdelrahman	
Professor of Concrete Structures Faculty of Engineering, Ain Shams University	
Prof. Dr. Nadia M. Noufal	
Professor of Properties and Testing of Materials Housing and Building National Research Center	

جامعة عين شمس كلية الهندسة قسم الهندسة الإنشائية

" سلوك الكمرات الخرسانية سابقة الإجهاد والمحددة استاتيكياً تحت تأثير الحريق"

إعداد

المهندس/ أنور محمود محمد إسماعيل

بكالوريوس الهندسة المدنية جامعة حلوان ٢٠٠٦ ماجستير الهندسة المدنية جامعة حلوان ٢٠٠٦ رسالة مقدمة إلى كلية الهندسة جامعة عين شمس كجزء من متطلبات الحصول على درجه الدكتوراه

> في الهندسة المدنية تحت إشراف

أ. د. نادية محمود نوفل

أستاذ بمعهد بحوث مواد البناء وضبط الجودة المركز القومي لبحوث الإسكان والبناء

د. تامر حسن كمال الافندى

مدرس بمعهد بحوث الخرسانة المسلحة المركز القومي لبحوث الإسكان والبناء

أ.د. عمرو على عبد الرحمن

أستاذ المنشات الخرسانية كلية الهندسة جامعة عين شمس

أ.م.د أحمد حسن غلاب

أستاذ مساعد – قسم الهندسة الانشائية كلية الهندسة جامعة عين شمس

جامعة عين شمس كلية الهندسة قسم الهندسة الإنشائية

احث	الد	أسىم

المهندس: أنور محمود محمد إسماعيل

عنوان البحث

" سلوك الكمرات الخرسانية سابقة الاجهاد والمحددة استاتيكياً تحت تاثير الحريق "

لجنة الحكم التوقيع

 أ.د خالد عدنان صدقى
أستاذ المنشات الخرسانية _ بجامعة وترلو _ كندا
 أ. د أحمد شريف عيسوى
أستاذ المنشات الخرسانية بكلية الهندسة جامعة عين شمس
 أ.د عمرو علي عبد الرحمن
أستاذ المنشآت الخرسانية بكلية الهندسة جامعة عين شمس
 أ.د. نادية محمود نوفل
أستاذ خواص ومقاومة المواد
معهد بحوث مواد البناء وضبط الجودة
المركز القه من ليحوث الاسكان والبناء

ABSTRACT

Prestressed concrete is widely used in the construction industry in buildings, bridges, towers, pressure vessels and offshore structures. In numerous structures, the architectural requirements prescribe the incorporation of long span and slender elements in which the prestressed concrete is rendered the most feasible design alternative. The strength and serviceability of reinforced concrete (RC) and prestressed concrete (PC) elements are generally affected after fire exposure. The basic design objective for such elements would be life safety and collapse prevention.

The main objective of this investigation is to the study behavior of statically determinate prestressed concrete beams subjected to fire. In this respect, an extensive experimental/ analytical investigation was conduced on number of medium scale post-tensioned concrete girders subjected to fire. The experimental program consisted of testing twelve beams, five of which were partially prestressed, five beams fully prestressed and the remaining two beams are non prestressed beams. The beams had an overall width, depth and length of 160, 340 and 4400 mm, respectively. The beams were simply supported with a clear span of 4000 mm. The prestressing strand had a harped profile similar to the shape of the applied bending moment. The main test variables are concrete compressive strength, concrete cover and prestressing index. All prestressing specimens were cast using bonded prestressing strands. The strands were stressed after the concrete had reached an age of 28 days, and then grouted with cementitous grout. The test program was divided into two phases. Five beams were tested as control beams and the remaining seven beams were loaded and exposed to fire at level of 600°C for a three hours duration.

The beams were tested using two concentrated loads at mid span by two hydraulic jacks. The previously described setup was provided with a furnace located at the beam middle part. The tested beams were loaded up to its working load, then the middle 1000-mm was exposed to fire at temperature level of 600 °C for three hours. The specimens were left to cool gradually, while the load was maintained. The load was released and the beams were loaded again up to failure. The beams were tested up to failure using a stroke control system. The test parameters included fire exposure, concrete compressive strength, prestressing level and concrete cover.

Modes of failure, ultimate load carrying capacity, deflection and strain of both steel reinforcement and concrete at critical sections were monitored. The cracking behavior of prestressed and non prestressed concrete beams was presented. Analyses and comparisons of the experimental test results were also introduced. Analytical investigation based on strain compatibility approach was used to predict the deformational behavior of the tested prestressed and non prestressed concrete beams before and after fire exposure. Comparison between theoretical and experimental test results was also introduced.

The results showed that the partially and the non prestressed concrete beams with concrete cover equal to 25 mm have higher resistance to fire exposure than that of fully prestressed concrete beam in terms of ultimate capacity and ductility. Also the high strength partially and fully prestressed concrete beams had lower fire resistance than normal strength beams.

TABLE OF CONTENTS

	Page
DEDICATION	i
ACKNOWLEDGMENT	ii
STATEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	vi
LIST OF SYMBOLS	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
Chapter (1)	
INTRODUCTION	
1-1 Research Motivation	1
1-2 Objectives	2
1-3 Methodology	3
1-4 Thesis Layout	4
Chapter (2)	
LITERATURE REVIEW	
2-1 Introduction	6
2-2 Prestressing Systems	6
2-2-1 Pre-Tensioned	7
2-2-2 Post-Tensioned	7
2-3 Serviceability of Prestressed Concrete Beams	7
2-4 Partial and Fully Prestressing	8

	Page
2-4-1 Definition of Prestressing Indices	10
2-5 Behavior of Prestressed Beams	13
2-5-1 Behavior of Prestressed Beams in Flexure	13
2-5-2 Typical Load Deflection Curve for PT Beams	15
2-5-3 Ductility Calculation	16
2-5-4 Ultimate Steel Stress	21
2-5-5 Tension Stiffening	23
2-6 Effect of Fire	24
2-6-1 Fire Test	25
2-6-2 Fire Component	25
2-6-3 Fire Endurance	26
2-6-4 Effect of Fire on Concrete	26
2-6-4-1 Normal Strength Concrete	28
2-6-4-2 High Strength Concrete (HSC)	32
2-6-5 Effect of Fire on Reinforcement	36
2-6-5-1 Effect of Fire on Steel Reinforcement	36
2-6-5-2 Effect of Fire on Prestressing Strands	38
2-6-6 Spalling of Fire Exposed Concrete	42
2-7 Effect of Cooling Treatment	44
2-8 Effect of Fire Temperature on Structural Behavior of	48
2-8-1 Behaviour of Structures under Fire	48
2-8-2 Effect of Fire on Flexure Behavior on Reinforced	49
concrete Elements	
2-8-3 Effect of Fire on Flexure Behavior on Prestressed	53
concrete Beams	

	Page
Chapter (3)	
EXPERIMENTAL PROGRAM	
3-1 Introduction	63
3-2 Tested Specimens	63
3-3 Materials Properties	72
3-3-1 Cement	72
3-3-2 Silica Fume	72
3-3-3 Admixtures	72
3-3-4 Water	73
3-3-5 Fine Aggregate	73
3-3-6 Coarse Aggregate	74
3-3-7 Reinforcing Steel and Prestressing Strand	74
3-3-8 Thermal Conductivity	75
3-4 Fabrication of Test Specimens	76
3-4-1 Concrete Mix	76
3-4-2 Installation of Prestressing Fittings	79
3-4-3 Anchorage Zone Details	80
3-4-4 Casting of Specimens	81
3-5 Application of Prestressing Force	82
3-6 Grouting Procedure	85
3-7 Test Set-Up	87
3-7-1 Beams not exposed to Fire	87
3-7-2 Beams Exposed to Fire	88
3-8 Instrumentation	88
3-9 Test set-up of the Fire Furnace	93
3-9-1 Furnace Components	93
3-9-2 Fire Lighter (Two Stages Operation)	93

	Page
3-9-3 Temperature Control System	93
3-9-4 Flame Outlet	94
Chapter (4)	
EXPERIMENTAL RESULTS	
4-1 Introduction	97
4-2 Experimental Results	97
4-3 Analysis and Discussion of the Experimental Work	99
4-3-1 Crack Patterns and Mode of Failure	100
4-3-1-1 Control Beam	100
4-3-1-2 Behavior of Beam Subjected to Fire	103
4-3 -2 Observation during Fire Duration	106
4-3-3 Load-Deflection and Strains Behavior	108
4-3-3-1 Group 1 (Concrete Compressive Strength)	110
4-3-3-2 Group 2 (Concrete Cover)	120
4-3-3-3 Group 3 (Prestressing Level)	128
4-3-3-4 Group 4 (Fire Exposure)	150
4-4 Temperature Distribution	163
4-4 -1 Temperature Distribution during Cooling	170
4-4-2 Load Deflection Relationship during Fire	172
Chapter (5)	
ANALYTICAL INVESTIGATION	
5-1 Introduction	176
5-2 Material Modeling	176
5-2-1 Concrete	176
5-2-2 Steel Reinforcement	178
5-2-3 Prestressing Steel	179

	Page
5-3 Anchor Slip and Friction Losses	180
5-4 Prestressing Force and Extension Measurements	184
5-5 Internal Force Calculations	187
5-6- Effect of Fire	190
5-6-1 Concrete	190
5-6-2 Fire Effect on Steel Reinforcement	192
5-6-3 Fire Effect on Prestressing Strands	193
5-7 Calculation of Moment-Curvature Relationship	195
5-8 Deflection Prediction	199
5-8-1 Comparison between the Theoretical and	202
Experimental Load Deflection Curve 5-8-1-1 Control Beams	202
5-8-1-2 Beams Exposed to Fire	207
Chapter (6)	
SUMMARY AND CONCLUSIONS	
6-1 Summary	214
6-2 Conclusions	215
6-3 Recommendations for Future Research Work	217
REFERENCES	218

LIST OF TABLES

	Page
Table (2-1) Effect of Heat on Concrete	30
Table (2-2) Effect of Heat on Steel Reinforcement	37
Table (3-1): Details of Tested Beams	65
Table (3-2): Mechanical Properties of 10 mm Steel Bars	75
Table (3-3): Mechanical Properties of Prestressing Strand	75
Table (3-4): Mix Design Proportions	76
Table (3-5) Average Compressive Strength of Concrete Cubes	78
for Test Specimens	
Table (4-1): Experimental Results of Tested Beams	٩٨
Table (4-2): Parameters and Group Number	99
Table (4-2). Farameters and Group Number	• •
Table (4-3): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking Stages for G (1-1)	111
Table (4-4): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking	117
Stages for G (1-2) Table (4-5): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking	171
Stages for G (2-1) Table (4-6): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking	١٢٦
Stages for G (2-2) Table (4-7): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking Stages for G (3-1)	179
Stages for G (3-1) Table (4-8): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking Stages for G (3-2)	180
Table (4-9): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking Stages for G (3-3)	189

	Page
Table (4-10): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking	128
Stages for G (3-4)	
Table (4-11): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking Stages for G (3-5)	1 2 7
Table (4-12): Value of Loads, Deflections and Slope of Load-	
Deflection Curve at Initial and Post Cracking Stages for G (4-1)	101
Table (4-13): Value of Loads, Deflections and Slope of Load-	
Deflection Curve at Initial and Post Cracking	104
Stages for G (4-2)	
Table (4-14): Value of Loads, Deflections and Slope of Load- Deflection Curve at Initial and Post Cracking	107
Stages for G (4-3)	
Table (4-15): Value of Loads, Deflections and Slope of Load-	159
Deflection Curve at Initial and Post Cracking	
Stages for G (4-4)	
Table (4-16): Value of Loads, Deflections and Slope of Load-	171
Deflection Curve at Initial and Post Cracking	
Stages for G (4-5)	
Table (5-1): Prestressed Force after Friction Losses for	١٨١
Partially Prestressed Concrete Beam	
Table (5-2): Prestressed Force after Friction Losses for Fully	١٨٢
Prestressed Concrete Beam	
Table (5-3): Jacking Force, Initial Prestressed Force and	18٤
Extension Value for Calculated and Experimental	
Result	٠.٥
Table (5-4): Fire Effect on Compressive Strength for Tested Cylinders	19.
Table (5-5): Fire Effect on Yield Strength for Steel	192
Reinforcement	
Table (5-6): Fire Effect on Tensile Strength for Prestressing	194
Strand	
Table (5-7): Comparison between the Predicted and Measured	198
Ultimate Moment Results of the Control Beams	
Table (5-8): Comparison between the Predicted and Measured	199
Ultimate Moment Results of the Fired Beams	

LIST OF FIGURES

	Page
Figure (2-1) Idealized Load-Deflection Curves for Beams with	1 ٤
Varying Amount of Prestressed Force	
Figure (2-2): Sketch of Moment-Deflection Relationship of	10
Internally Prestressed Concrete Beam	
Figure (2-3) Typical Effect of the Effective Prestress on Ultimate	14
and Yield Curvatures for Rectangular Section	
Figure (2-4) Examples of Variation of Curvature Ductility as a	1٨
Function of PPR	
Figure (2-5) Typical Load-Deflection Curves for Fully Prestressed	۲.
Beams: (a) Static; (b) Cyclic	
Figure (2-6) Typical Load-Deflection Curves for Partially	۲.
Prestressed Beams: (a) Static; (b) Cyclic	
Figure (2-7) Comparison of Value of f_{ps}/f_{pu} using Nonlinear	77
Analysis for Different $f_{\rm c}^{\ /}$	
Figure (2-8) Comparison of Experimental Result with Nonlinear	77
Analysis	
Figure (2-9) Variation of f_{ps}/f_{pu} Versus c_u/d_e	73
Figure (2-10) Physical and Chemical Change In Concrete during	2٨
Fire	
Figure (2-11) Compressive Strength of Carbonate Aggregate	٣1
Concrete at High Temperatures and After Cooling	
Figure (2-12) Residual Compressive Strength for Normal Strength	47
Concrete at High Temperatures	
Figure (2-13) σ - ϵ Diagrams of NSC, HPC and HPC with Fiber	٣٣
Cocktail	

	Page
Figure (2-14) Compressive Strength of Concrete after High	3٤
Temperature	
Figure (2-15) Variation of Compressive Strength with Temperature	30
for High-Strength Concrete	
Figure (2-16) Residual Compressive Strength for High Strength	3٦
Concrete at High Temperatures	
Figure (2-17) Percent of Strength of Steel at High Temperatures	34
Figure (2-18) Residual Tensile Strength of Prestressing Strands vs	٤.
Temperature	
Figure (2-19) Residual Tensile Strength of Prestressing Strands with	٤١
Temperature	
Figure (2-20) Yield Strength Reduction Factors Versus Temperature	٤٢
for Prestressed Steel Wire	
Figure (2-21) Example of Concrete Element after the Fire Showing	٤٣
Spalling, Frankfurt, Germany, 1973	
Figure (2-22) Temperature of Furnace and Concrete 26H1 Subjected	٤٥
to Quenching	
Figure (2-23) Temperature of 26H1 Subjected to Natural Cooling	٤٥
and Water Spraying for 60 min	
Figure (2-24) Temperature of Furnace and Concret 26C Subjected to	٤٦
Quenching	
Figure (2-25) Temperature of 26C Subjected to Natural Cooling	٤٦
and Water Spraying for 60 min	
Figure (2-26) Residual Compressive Strength of Plain Concrete 26C	4٧
Figure (2-27) Residual Compressive Strength of Hybrid Fiber	4٧
Concrete 26P1	