Evaluation Of Regenerative Potential Of Pulp -derived Stem Cells And Gingival-derived Stem Cells In The Regeneration Of Periodontal Defects

(Experimental study)

Submitted in partial fulfillment of the requirements of Master Degree in Oral Medicine, Periodontolgy, and Oral Diagnosis

Hagar Mohamed Abd-El Fatah Mohamed B.Sc., of Dentistry (Ain Shams University, 2007)

Supervisors

Prof. Dr. Khaled Atef Abd-El Ghaffar

Dean of Faculty of Dentistry Ain Shams University
Professor of Oral Medicine, Periodontology, and Oral
Diagnosis
Faculty of Dentistry, Ain Shams University

Dr. Tarek Hussein El-Bialy Tout Helberly

Associate Professor of Orthodontics and Biomedical Engineering
Faculty of Medicine and Dentistry, University of Alberta
Canada

Dr. Fatma Hamed M. El-Demerdash

Lecturer of Oral Medicine, Periodontology, and Oral
Diagnosis
Faculty of Dentistry, Ain Shams University
Faculty of Dentistry
Ain Shams University
2015

تقييم القدرة التجديدية للخلايا الجذعية المستخلصة من عصب السن و اللثة في التجديد للعيوب اللثوية (دراسة تجريبية)

رسالة تمهيدية مقدمة لكلية طب الأسنان جامعة عين شمس توطنة للحصول على درجة الماجستير في طب الفم و التشخيص و علاج اللثة مقدمة من

الطبيبة/ هاجر محمد عبد الفتاح محمد

بكالوريوس طب الفم و الاسنان جامعة عين شمس (٢٠٠٧)

تحت اشراف

أ.د. خالد عاطف عبد الغفار

عميد كلية طب الفم و الأسنان جامعة عين شمس أستاذ طب الفم و علاج اللثة و التشخيص كلية طب الفم و الأسنان جامعة عين شمس

د. طارق حسين البيلي ماملك هسك السنان أستاذ مشارك بكلية الطب و طب الأسنان جامعة ألبيرتا كندا

د. فاطمة حامد محمد الدمرداش

مدرس طب الفم وعلاج اللثة و التشخيص كلية طب الفم و الأسنان جامعة عين شمس

كلية طب الفم و الأسنان جامعة عين شمس (٢٠١٥)

Acknowledgement

I would like to express my deep thanks and gratitude to professor **Dr. Khaled Atef Abd-El Ghaffar** for his meticulous help and great advice.

My deep gratitude is due to **Dr. Tarek Hussein El-Bialy** for giving me a great hand in my thesis.

A lot of thanks to **Dr. Fatma Hamed M. El-Demerdash** who exerted a lot of effort and help throughout this thesis.

We are grateful to **Qatar Foundation** that has funded all the steps of our research and equipments throughout this thesis.

My deep gratitude and thanks to Queen Medical Center and its manager **Dr. Mamdouh Farid** who arranged all the facilities in their stem cell lab, we extend our thanks to The Veterinary Surgery in Doha who gave a hand in dogs accommodation throughout the study.

I also express my profound sense of gratitude to **Dr. Ali** Saleem who instructed me how to work on stem cells, and **Dr.** Hesham Khalifa for giving me hand in statistical analysis of the results.

My deep gratitude and thanks to all the staff members in Oral Medicine, Periodontology, and Oral diagnosis department specially **Mahetab Abd El-Wahab** who has helped me throughout this thesis.

Aim of the study

To compare the regenerative potential of pulp derived stem cells and gingival derived stem cells in periodontal alveolar defects.

• Clinically:

In terms of probing depth (PD), clinical attachment loss (CAL), and defect size (DS).

• Histologically.

• Histomorphometrically:

In terms of optical density, number of osteoblasts, and area percentage of the newly formed bone.

LIST OF FIGURES

Fig. No.	Title	Page No.
1	The role of stem cells in periodontal regeneration.	2
2	Schematic representation of periodontal tissue engineering.	7
3	Sources and derivation of stem cell populations.	9
4	Selected stem/progenitor cell populations identified from different tissues/regions in or around a tooth that may have the potential to regenerate lost/damaged periodontal tissues.	18
5	The stem cell niche consists of both the 'true' adult stem cell surrounded by the transit amplifying progenitor cells.	22
6	Selected cell surface markers of dental stem cells (DPSCs) that are commonly used for dental stem cell characterization.	24
7	Pre-clinical and clinical studies delivering autologous or allogenic stem cells of either dental or non-dental origin to the periodontium via biomaterials-free or biomaterials based approaches.	32
8	Dental Bite block (Adult) size).	47
9	NSK Mio Coreless Micromotor System	48
10	A- Scalpel blade was used to cut the tissue into small pieces. B- Adding collagenase solution to the fragmented tissue. C- Using serological pipette, transfer the tissue to 50mL tube. D- Place the tube in 37°C water bath and incubate for one hour.	50

Fig. No.	Title	Page No.
11	A- Spin the tube at 18 G for 5 minutes. B- Pellet forms after the centrifugation. C- Gently suck collagenase solution, and add 9 mL of Alpha MEM medium to the tube. D- Transfer the content of the tube to T-25 flask, and label the flask.	52
12	Cell growth A- Two days after culturing. B- Ten days after culturing.	52
13	Flow cytometry A- DPSCs positively express CD90. B-GMSCs positively express CD90. C- DPSCs were negative for CD45. D- GMSCs were negative for CD45.	54
14	Osteogenic differentiation A- Osteogenic Cells Phase- Contrast. B- Osteogenic Cells Fluorescent Image.	54
15	Adipogenic differentiation. A- MSCs differentiated into adipocytes in culture. B- Oil Red stained differentiated adipocytes.	55
16	Chondrogenic differentiation. A- MSCs differentiated into chondrocytes in culture. B- Alcian blue stained differentiated chondroytes.	56
17	Collagen sponge.	58
18	Creation of periodontitis model.	62
19	Transplantation procedures.	63
20	Creation of periodontitis model.	64
21	a- Gingival tissue was obtained from the interdental papilla of the maxillary canine tooth. b- Gingival tissue biopsy.	65
22	Transplantation procedures.	65
23	Pre- and Post-treatment mean probing depth in each group. G1 = DPSCs, G2 = GMSCs, G3 = Control.	67

Fig. No.	Title	Page No.
24	Pre- and Post-treatment mean probing depth of different groups.	68
25	Pre- and Post-treatment mean changes in probing depth of different groups.	68
26	Pre- and Post-treatment mean attachment loss in each group. G1 = DPSCs, G2 = GMSCs, G3 = Control.	70
27	Pre- and Post-treatment mean attachment loss of different groups.	71
28	Pre- and Post-treatment mean changes in attachment loss of different groups.	71
29	Pre- and Post-treatment mean defect size in each group. G1 = DPSCs, G2 = GMSCs, G3 = Control.	73
30	Pre- and Post-treatment mean defect size of different groups.	74
31	Pre- and Post-treatment mean change in defect size of different groups.	74
32	H&E stained section showing mature lamellar bone opposite to the notch. Well defined bone trabeculae were observed enclosing large highly vascular and irregular marrow spaces. (Orig. Mag. X100).	76
33	H&E stained section showing mature lamellar bone opposite to the notch. Well defined bone trabeculae were observed enclosing large highly vascular and irregular marrow spaces. (Orig. Mag. X100).	76
34	H&E stained section showing dense fibrous connective tissue (CT) with periodontal ligament fibers (PL) attached to the tooth surface. (Orig. Mag. X400).	77
35	Von Kossa stained section showing variable sized osteons (square) with a concentrically arranged lamellae (LB) and dark red flat osteocytes (black arrow). (Orig. Mag. X200).	77

Fig.	Title	Page No.
36	H&E stained section showing mature lamellar bone (LB) arranged concentrically around central canal which contain blood vessels and some delicate connective tissues. Marrow spaces (MS) were lined by osteoblastic rim (black arrow). Lacunae of osteocytes entrapped in the bone lamellae (red arrow). (Orig. Mag. X100).	79
37	H&E stained section showing spongy pattern of mature lamellar bone (LB) that was formed of well defined bone trabeculae which enclose large highly vascular and irregular marrow spaces (MS). Lacunae of osteocytes entrapped in the bone lamellae (black arrow). (Orig. Mag. X200).	79
38	Von Kossa stained section showing variable sized osteons with a concentrically arranged lamellae (LB) and dark red flat osteocytes (black arrow). (Orig. Mag. X200).	80
39	H&E stained section showing mature lamellar bone with dense fibrous connective tissue (CT) was observed opposite to the notch. (Orig. Mag. x100).	81
40	H&E stained section showing mature spongy bone opposite to the notch. Well defined bone trabeculae (BT) were observed enclosing large highly vascular and irregular marrow spaces (MS). Lacunae of osteocytes entrapped in the bone lamellae (black arrow). (Orig. Mag. X200).	81
41	Von Kossa stained section showing mature spongy bone and dark red flat osteocytes (black arrow). (Orig. Mag. X200).	82
42	Mean cell count in different groups.	83
43	Mean area percentage in different groups.	84
44	Mean optical denisty in different groups.	85

LIST OF TABLES

Table	Title	Page
No.		No.
1	Possible periodontal wound healing responses	2
2	Phases of periodontal regeneration	5
3	Requirements for successful tissue engineering	6
4	The categories of stem cell potency	8
5	Fundamental properties of stem cells	10
6	Properties of embryonic stem cells	11
7	Effect of treatment (pre- and post-treatment) on probing depth within each group.	66
8	Pre- and Post-treatment probing depth values in different groups.	67
9	Effect of treatment (pre- and post-treatment) on attachment loss within each group.	69
10	Pre- and Post-treatment attachment loss values in different groups.	70
11	Effect of treatment (pre- and post-treatment) on defect size within each group.	72
12	Pre- and Post-treatment defect size values in different groups.	73
13	Number of osteoblast in different groups	83
14	Area percentage of the newly formed bone in different groups.	84
15	Optical density in different groups	85

Table of Contents

Subject	Page
Abbreviations	
List of Tables	IV
List of Figures	V
Introduction and Review of literature.	
Aim of the study	44
Materials and Methods.	
Case Presentation 1.	62
Case Presentation 2.	64
Results	66
Discussion	86
Summary	
Conclusion and Recommendation.	
References	
Arabic Summary	

Abbreviations

ALP: Alkaline phosphatase.

ASCs: Adipose stem cells.

bFGF: Basic fibroblast growth factor.

BMPs: Bone morphogenetic proteins.

BMSSCs: Bone marrow stromal stem cells.

CaP: Calcium phosphate.

CD: Cluster of Differentiation.

CFU-Fs: Colony forming units-fibroblastic.

Col: Collagen.

DFCs: Dental follicle progenitor cells.

DMEM: Dulbecco's Modified Eagle's Medium.

DPSCs: Dental pulp stem cells.

DSPP: Dentin sialophospohoprotein.

ECM: Extracellular matrix.

EDTA: Ethylenediaminetetraacetic acid.

EMD: Enamel matrix derivative.

ES: Embryonic stem cell.

FBS: Fetal Bovine Serum.

FGF: Fibroblast growth factor.

GF: Gingival fibroblast.

GMSC: Gingival mesenchymal stem cells.

GTR: Guided tissue regeneration.

H&E: Hematoxylin and Eosin.

HA/TCP: Hydroxyapatite/tricalcium phosphate.

HA: Nanohydroxyapatite.

HBSS: Hank's Balanced Salt Solution.

HEPES: Hydroxyethyl piperazine ethanesulfonic acid.

HLA class II: Human Leukocyte Antigen class II.

IGF-I: Insulin-like growth factor-I.

iPS: induced pluripotent stem.

IV: Intravenous.

KLF4: Kruppel-like factor 4.

LAB: Living autologous bone.

MEM: Minimum Essential Medium.

MMP: Matrix metalloproteinase.

MSCs: Mesenchymal stem cells.

OCT3/4: Octamer binding transcription factor 3/4.

PBS: Phosphate buffered saline.

PDGF: Platelet-derived growth factor.

PDL: Periodontal ligament.

PDLSCs: Periodontal ligament stem cells.

PGA: Poly glycolic acid.

PLA: Poly lactic acid.

PLGA: Poly lactic-co-glycolic acid.

rpm: Revolutions per minute.

SBP-DPSCs: Stromal Bone Producing Dental Pulp Stem Cells.

SCAP: Stem cells from apical papilla.

SCF: Stem cell factor.

SHED: Stem cells from exfoliated deciduous teeth.

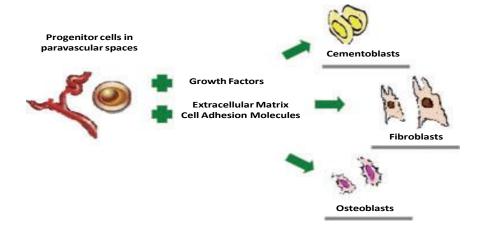
SSEA-4: Stage-specific embryonic antigen-4.

SubQ: Subcutaneous.

TGF: Transforming growth factor.

β-TCP: Beta-tricalcium phosphate.

Introduction and Review of Literature


Periodontitis is one of the most wide spread chronic inflammatory diseases, and it progressively destroys the tooth-supporting structure, which consists of the gingiva, periodontal ligament (PDL), alveolar bone, and root cementum. If left untreated, periodontitis may eventually lead to the loosening and subsequent loss of teeth.¹

The ideal goal of periodontal therapy is to regenerate these lost tissues to their original form, architecture and function, which poses a challenging task, requiring the harmonization of many cellular and molecular events.² Periodontal regeneration can be defined as the complete restoration of the lost tissues to their original architecture and function by recapitulating the crucial wound healing events associated with their development.³

Healing following conventional periodontal therapy is more complicated than simple soft tissue healing because of the involvement of mineralized tissues (i.e., cementum and bone) in addition to soft tissue components. Most mechanical and surgical periodontal procedures (e.g., scaling, debridement and flap procedures of various types) favor the healing of anatomical defects produced by periodontitis. This largely involves repair of the gingival connective tissues and the coronal portion of the periodontal ligament with virtually no repair of the cementum or alveolar bone. These events, by definition, do not constitute regeneration of the periodontium. Indeed, healing after flap surgery is mediated by a range of reparative responses, none of which can be considered to be tissue regeneration. For regeneration to occur, healing events should progress in an ordered and programmed sequence both temporally and

Introduction and Review of Literature

spatially, replicating the key events in periodontal development^{2,5} (Table 1).⁶ The course of healing is dependent on the availability of appropriate cells, inductive factors and extracellular matrix secreted by these cells.⁷ Progenitor and stem cells are of particular interest in periodontal wound healing and regeneration as they are most likely the parental cells of synthetic cells (e.g., osteoblasts, cementoblasts and fibroblasts) responsible for the restoration of lost periodontal tissues (Fig.1).⁸⁻¹⁰

Fig.1. The role of stem cells in periodontal regeneration. Cells in the paravascular areas of mature periodontal ligament have the potential to differentiate into mature osteoblasts, periodontal ligament fibroblasts and cementoblasts.⁶

Table 1. Possible periodontal wound healing responses⁶

Repair Control of inflammation.

Long junctional epithelium.

Connective tissue attachment to the root surface (reattachment or new attachment).

New bone separated from the root surface by long functional epithelium.

New bone with root resorption or ankylosis or both.

Regeneration New functional attachment apparatus with formation of cementum, periodontal ligament and alveolar bone.