

Faculty of Veterinary Medicine

Department of Microbiology

Bacteriological studies on some molluscus

A Thesis presented by:

Suhair Abd-EL Mowgoud Barakat

B.V.SC. (2002), Faculty of Veterinary Medicine, Assuit University

For Master degree

In Veterinary Medical Sciences

(Microbiology)

(Bacteriology, Immunology and Mycology)

Under the Supervision of

Prof. Dr. Nashwa Abd-El salam Ezzeldeen

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Hayam Abd-El Aal Mansour

Professor of Meat Hygiene, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Mohamed Mohamed Mousa

Professor of Meat Hygiene, Vice Dean of education and students affairs, Faculty of Veterinary Medicine, Alexandria University

Supervisors

Prof. Dr. Nashwa Abd-El salam Ezzeldeen

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Hayam Abd-El Aal Mansour

Professor of Meat Hygiene, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Mohamed Mohamed Mousa

Professor of Meat Hygiene, Vice Dean of education and students affairs, Faculty of Veterinary Medicine,

Alexandria University

Cairo University Faculty of Veterinary Medicine Department of Microbiology

APPROVAL SHEET

This is to certify that the dissertation submitted by **Suhair Abd-EL Mowgoud Barakat** to Cairo University, for the M.v.s. degree of veterinary medical sciences, Microbiology (Bacteriology, Immunology and Mycology) has been approved by the examining committee.

- Prof. Dr. Fawzy Riyad Mohamed EL-Seedy
 Professor of Microbiology
 Faculty of Veterinary Medicine
 Beni Suef University
- Prof. Dr. Heidy Mohamed Shawky
 Professor of Microbiology
 Faculty of Veterinary Medicine
 Cairo University

Heidy Show by

- Prof. Dr. Nashwa Abd-El Salam Ezzeldeen (Supervisor)
 Professor of Microbiology
 Faculty of Veterinary Medicine
 Cairo University
- Prof. Dr. Hayam Abd-El Aal mansour (Supervisor)
 Professor of meat hygiene
 Faculty of Veterinary Medicine
 Cairo University
- Prof. Dr. Mohamed Mohamed Mousa (Supervisor)

 Professor of meat hygiene Vice Dean of education and students
 affairs, Faculty of Veterinary Medicine
 Alexandria University

 M. Mous

 14/11/2015

Date: 14/11/2015

Name: Suhair Abd-EL Mowgoud Barakat

Nationality: Egyption

Date of birth: 6/2/1979

Degree: Master

Department: Microbiology

Thesis Title: Bacteriological studies on some molluscus

Abstract

A total of 100 samples of bivalve molluscus was subjected for enumeration, isolation and identification of Staphylococcus aureus, total coliforms, faecal coliforms and Escherichia coli. Sixty one strains of S. aureus were isolated, 20 strains from each yellow and black Gandoufly and 21 strains from Om El-Kholoul. While 36 strains of E. coli were isolated 13 strains from yellow Gandoufly, 12 strains from black Gandoufly and 11 strains from Om El-Kholoul. All S. aureus isolates were coagulase positive. The antimicrobial sensitivity test revealed that all the S. aureus isolates were 100% sensitive to rifampicin, vancomycin, cephalexin, cephataxime, chloramphenicol, kanamycin, neomycin, amikacine, spiramicin, gentamicin, ciprofloxacin, enrofoxacin, ofloxacin, oxacillin, cloxacillin, amoxy-clavulinic acid and ampicillin. Mean while they were 100% resistant to pefloxacin and flumequine, and 92% to streptomycin. While the E.coli isolates were 100% resistance to ampicillin, amoxicillin and streptomycin, 50% to trimethoprimsulfamathoxazole, lincomycin, neomycin and pefloxacin. Mean while they were 100% sensitive to ofloxacin, enrofloxacin, gentamicin, spiramicin and amikacin, 93.3, 90, 90, 83.3, 80, 80, 76.6, 63.3 and 60% to cephataxime, cephalexin, amoxy-clavulinic, chloramphenicol, tetracycline, kanamycin, flumequine, ciprofloxacin and erythromycin respectively.

Key words: Bivalve • S. aureus • E. coli • Antimicrobial sensitivity

To the soul of my father

To My mother, my husband and my little daughters

(Mai and Yara)

My dearest friend Abeer

My sisters and brother

<u>Acknowledgement</u>

First of all, I would like to express my greatest thanks to ALLAH as who gave me this opportunity to carry out this thesis and supported me with his blessing and unlimited care.

I wish to express my sincere gratitude to prof. Dr. Nashwa Abd-El salam Ezzeldeen professor of microbiology, Faculty of veterinary Medicine, Cairo University, for her supervision, kind true guidance, stimulating suggestion and valuable help given to make this work accurate and successful and given me so much of her valuable time, experience and scientific knowledge. I am proud of work under her supervision.

I greatly thank prof. Dr. Hayam Abd El-All Mansour, professor of Meat hygiene, Faculty of veterinary Medicine, Cairo University, for her supervision, continuous help, encouragement and great effort that she has given during investigation.

I greatly thank prof. Dr. Mohamed Mohamed Mousa, professor of Meat hygiene, Faculty of veterinary Medicine, Alexandria University, for his supervision, continuous help, supporting and encouragement.

Also I want to express my great thank to Dr. Mahmoud El-Hariry for his helping in my work.

List of CONTENTS

	Page
<u>Introduction</u>	1
Review of literature	5
2.1. Food poisoning bacteria and bivalve molluscus	5
2.2. Antibiotic sensitivity of Staphylococcus aureus	21
2.3. Antibiotic sensitivity of Escherichia coli	30
Materials and Methods	38
3.1. Materials	38
3.1.1. Samples	38
3.1.2. Ringer solution	38
3.1.3. Media used for isolation and identification of some bacterial isolates	38
3.1.3.1. Media used for isolation of <i>staphylococcus aureus</i>	38
3.1.3.2. Media used for isolation of <i>Salmonella</i> spp	39
3.1.3.3. Media used for isolation of coliforms and <i>E. coli</i>	39
3.1.3.4. Media used for preservation of bacterial isolates	40
3.1.3.5. Media used for study of the colonial characteristics	40
3.1.4. Media used for biochemical identification	40
3.1.4.1. Media used for identification of Gram positive isolates	40
3.1.4.2. Media used for identification of Gram negative isolates	41
3.1.5. Media used for antibiogram assay	42
3.1.6. Reagents and chemicals	42
3.1.6.1. Reagents and chemicals were used for identification of Gram positive	
Isolates	42

3.1.6.2. Reagents used for identification of Gram negative isolates
3.1.7. Stain
3.1.8. Mcfarland tube 0.5
3.1.9. Reference strain
3.1.10. Antimicrobial susceptibility discs (Oxoid)45
3.1.11. Disposable plastic, glass ware and laboratory supplies
3.1.12. Equipments47
3.2. Methods
3.2.1. Collection of samples
3.2.2. Preparation of sample for examination48
3.2.3. Isolation of Staphylococcus aureus49
3.2.4. Staphylococcus aureus count
3.2.5. Purification49
3.2.6. Microscopical examination50
3.2.7 Biochemical identification of <i>S. aureus</i> isolates50
3.2.8. Coliforms count51
3.2.9. Enumeration of fecal coliforms bacteria52
3.2.10. Isolation of Escherichia coli
3.2.11. Isolation of Salmonella microorganisms53
3.2.12. Identification of Gram negative isolates54
3.2.12.1. Microscopical examination54
3.2.12.2. Detection of motility55
3.2.12.3. Biochemical identification
3.2.13. Antimicrobial sensitivity test
<u>Results</u> 61
4.1.Results of S. aureus isolated from bivalve molluscus61
4.2. Results of cultural identification of S.aureus61

4.3. Microscopic examination of Staphylococcus aureus	63
4.4. Biochemical identification of S. aureus.	63
4.5. Prevalence of S. aureus isolated from bivalve molluscus	64
4.6. Staphylococcus aureus count	64
4.7. Isolation of <i>E. coli</i> , the count of coliforms and fecal coliforms	66
4.8. Results of cultural identification of <i>E. coli</i>	67
4.9. Microscopic examination of E. coli	68
4.10. Biochemical identification of <i>E. coli</i>	68
4.11. Results of antimicrobial sensitivity test	72
4.11.1. Results of the antimicrobial sensitivity test of <i>S. aureus</i>	72
4.11.2. Results of the antimicrobial sensitivity test of <i>Escherichia coli</i>	74
<u>Discussion</u>	75
Conclusion.	90
<u>Summary</u>	91
References	93

List of tables

No	Title	page
1	Antimicrobial susceptibility discs	45
2	Biochemical characteristics of <i>S. aureus</i>	51
3	Interpretation and results of TSI test	56
4	Interpretion and zone diameter of inhibition among the antimicrobial agent used for <i>S. aureus</i>	59
5	Interpretion and zone diameter of inhibition among the antimicrobial agent used for <i>E. coli</i>	60
6	Biochemical and some enzyme production characteristics of <i>S. aureus</i> isolates	63
7	Prevalence of <i>S. aureus</i> isolated from bivalve molluscus (live and chilled samples).	64
8	S. aureus count (cfu/g) in chilled yellow gandoufly.	64
9	S. aureus count (cfu/g) in chilled black gandoufly	65
10	S. aureus count (cfu/g) in chilled OM-Elkholoul	65
11	Prevalence of <i>E. coli</i> isolated from molluscus (live and chilled samples 100)	66
12	Biochemical tests of E. coli convential standard separate tests	70
13	Mean total coliforms and fecal coliforms count (cfu/g) among different chilled	70
	bivalve molluscus	
14	The results of sensitivity of <i>S. aureus</i> isolates (n=25) to some antimicrobial agent.	73
15	The results of sensitivity of <i>E. coli</i> isolates (n=30) to some antimicrobial agent.	74

List of figures

No	Title	Page
1	Incidence of haemolysis of S. aureus on sheep blood agar	63
2	Mean count of S. aureus in chilled bivalve molluscus	66
3	Prevalence of <i>E. coli</i> isolated from chilled bivalve molluscus	67
4	Total coliforms count (MPN/g) in bivalve molluscus	71
5	Total fecal coliforms count (MPN/g) in bivalve molluscus	71

List of Photographs

No	Title	Page
1	Colonies of <i>S. aureus</i> on Baird Parker agar medium.	61
2	Colonies of <i>S. aureus</i> on mannitol salt agar medium	62
3	Colonies of <i>E. coli</i> on Eosin methylin blue and MacConkey's agar plates	68
4	Triple sugar Iron (TSI) test.	69
5	Positive Indole test	69
6	Antimicrobial sensitivity test for <i>S. aureus</i> .	72

List of abbreviations

APHA	American public health association
AOAC	Association of official analytical chemists
BGLB	Brilliant green lactose bile
CFU	Colony forming unit
CLSI	Clinical and Laboratory Standards Institute
E. coli	Escherichia coli
FAO	Food and Agriculture Organization
ICMSF	International Commission on Microbiological
	Specifications for Food
MPN	most probable number
S. aureus	Staphylococcus aureus

1. Introduction

The biological class of Bivalvia contains more than 20,000 species of marine and fresh water molluscus, including mussels, oyster and clams. These molluscus are commonly called bivalves. One of the distinguishing characteristics of this class is the presence of lamillibranch gills, which allow filter feeding (Villee *et al.*, 1978). During filter feeding, large volumes of water pass across the gills to allow the shellfish to obtain oxygen and food. Particulate matter from the water, including microorganisms is trapped in the mucus on the gills and transported to the mouth by ciliary action (SITO, 2005).

Numerous studies have shown that shellfish rapidly accumulate microorganisms if they are present in polluted water (Eyles, 1980; Rose and Sobsey, 1993 and Lees, 2000). It is fairly well established that bacteria can be removed from shellfish by placing them in clean water under specified environmental conditions in a process known as depuration (Richards, 1988). Eventually scientists began to understand the combined effects of bivalve filter feeding and environmental pollution on shellfish food safety, and today raw molluscan shellfish receive the second highest hazard rating of all foods (ICMSF, 1978). Temperature abuse during raw seafood harvesting and storage may help in microbial pathogens multiplication, thus posing a potential health threat to susceptible consumers (Liston, 1990).

Bivalves are regarded as potentially hazardous foods because of their inherent tendency to bioaccumulate pathogenic bacteria through filter feeding (**Hatha** *et al.*, **2005**). Seafood borne diseases associated with consumption of shellfish are the major challenge to the food hygienists in the 21st century, especially in the costal cites-Egypt. Good hygienic conditions prevent the cross-contamination from raw food to other food, clean disposable gloves were used during shellfish handling and thorough cooking of shellfish must be adopted to control the hazard of seafood-borne pathogens (**Ali and Hamza**, **2004**).