

Molecular studies on *Spiroplasma citri* for the development of sensitive and specific genotyping assay.

Thesis Submitted for the partial fulfillment of Master Degree of Science (M.Sc.) in Biochemistry

By

Wessam Hassan Abd El Monem Abd El Fatah B. Sc. Biochemistry, (2008)

Under Supervision of

Prof. Ahmed Osman Egiza

Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University

Prof. Abdel Baset Ahmed Shalaby

Professor of Plant Pathology, Virus and Phytoplasma Department, Plant Pathology Research Institute, Agriculture Research Center

Prof. Sahar Abd El Aziz Youssef

Professor of Plant Pathology, Virus and Phytoplasma Department, Plant Pathology Research Institute Agriculture Research Center

> Biochemistry Department Faculty of Science Ain Shams University 2017

Molecular studies on *Spiroplasma citri* for the development of sensitive and specific genotyping assay.

A Thesis

Submitted to the faculty of Science, Ain Shams University, For fulfillment of the degree of M.Sc.

In

Biochemistry

By

Wessam Hassan Abd El Monem Abd El Fatah

B. Sc. - Ain Shams University (2008)

Biochemistry Department,

Faculty of Science,

Ain Shams University

APPROVAL SHEET

Molecular studies on Spiroplasma citri for the development of sensitive and specific genotyping assay.

Submitted by

Wessam Hassan Abd El Monem Abd El Fatah

B.Sc., Biochemistry, 2008

This thesis submitted to Biochemistry Department, Faculty of Science,

Ain Shams University

For the degree of Master of Science (in Biochemistry)

Has been approved by:

1- Prof. Dr. Tahani Abd El-Rahman

Professor of Microbiology Faculty of Science, Cairo University

2- Prof. Dr. Om Hashem Mohamed El-Banna

Professor of Plant pathology, Faculty of Agriculture, Cairo University

3- Prof. Dr. Ahmed Osman Egiza

Professor of Biochemistry, Faculty of Science, Ain Shams University

4- Prof. Dr. Sahar Abd El Aziz Youssef

Professor of Plant Pathology, Virus and Phytoplasma Department, Plant Pathology Research Institute Agriculture Research Center

Biography

Name Wessam Hassan Abd El Monem Abd El Fatah

Date and Place of Birth 26 / 12/ 1987, Cairo, Egypt

Date of Graduation May, 2008

Degree Awarded for B.Sc. of Biochemistry

Graduation

Matriculation year December 2012

Year Grants 2017

صَيْكَ قِالله العَظِيمْ

آية (١١٣) سورة النساء

Declaration

I declare that this thesis has been composed and the work recorded here has been done by me.

I have not been submitted for any other degree at thesis or any other university.

Wessam Hassan Abd El Monem

Dedication

I would like to dedicate this work with all my deepest love and appreciation to every member of my faithful family, father, mother and my sisters Dina and Shereen, for their endless love, support and encouragement and for all my friends and, those from whom I have learned, whatever and whenever they are

Wessam Hassan Abd El Monem

Acknowledgments

First and foremost, I would like to start by thanking God the almighty till his satisfaction and beyond. I would like to express my sincere gratitude for all who have helped me to accomplish my work and finish this thesis.

My deep and sincere regards to my supervisor **Prof.**Ahmed Osman Egiza, Professor of Biochemistry, Faculty of Science, Ain Shams University, and, valuable guidance, for his tolerance, sense of purpose during the whole of work and his unlimited support to accomplish this work.

I wish to express my Deep sincere thanks and appreciation to **Prof. Abdel Baset Ahmed Shalaby,** Professor of Plant Pathology, Plant Pathology Research Institute, Agriculture Research Center, for his moral support, encouragement, suggestion fruitful advice and Provide the means necessary for the completion of this work. Thank you Dr. Abdel Baset for helping me to believe in my self.

I wish to express my thankfulness and appreciation to **Prof**. **Sahar Abd El-Aziz Youssef**, Professor of Plant Pathology, Plant Pathology Research Institute, Agriculture Research Center, for her encouragement, and her valuable help, kind directions, her sincere support and endless cooperation and gave me the time and effort to introduce this thesis in the best form. Thank you Dr. Sahar for all things.

Sincere gratitude is accorded to **Dr. Mohamed Ismail** and **Prof. Hassan Abd El- Monem** for help me in sample collection during this work.

Many thanks to all members and colleagues in Grape productivity improvement project, Virus and Phytoplasma Dept., Plant Path. Res. Inst. Agric. Res. for pleasant teamwork, create a warm, open atmosphere and assisted me in many ways are acknowledged.

Finally, I would like to whole - heartedly thank my family. It would be impossible to say enough about them also I send my deep gratitude, their pleasure and proud has always represented for me the most important aim

Wessam Hassan

Contents

Abstract	
List of abbreviations	II
List of figures	V
List of tables	VIII
Chapter I: Introduction	1
Chapter II: Aim of Work	5
Chapter III: Review of Literature	
1. Citrus	6
2. Mollicutes	8
2.1. Taxonomy of Mollicutes	10
3. Spiroplasma	11
4. Spiroplasma citri	12
5. Genetic contents	14
5.1. Chromosomal DNA	14
5.2. Plasmids	15
6. Growth and Division	17
7. Motility	19
8. Sugar Metabolism and Pathogenicity	20
9. Cytoskeleton and associated proteins	23
9.1. Fibril	
9.2. Spiralin	24
9.3. MreB	
9.4. P89	25
9.5. P58	
9.6. P32	27

9.7. SC76	27
9.8. Scm1	28
9.9. RecA	28
9.10. TraG	29
10.Diversity and Genetic Exchange	30
11.Genetic Similarities	31
12. Viruses; Role and Implication	32
13.Stubborn Disease	33
13.1. Geographical distribution and Economic impact	34
13.2. Symptoms	37
13.3. Host Range	39
13.4. Transmission	40
13.5. Isolation and Culturing	44
13.6. Detection	45
13.6.1. Biological Indexing	45
13.6.2. Serological Techniques	46
13.6.3. Molecular techniques	
13.6.4. Disease Management	49
Chapter IV: MATERIALS AND METHDS	52
Chapter V: RESULT	87
Chapter VI: DISCUSION	. 120
Chapter VII: SUMMARY AND CONCOLUSION	. 128
Chapter VIII: REFFRENCES	136
Arabic Summary	
Arabic Abstract	

Abstract

Stubborn disease of citrus is one of the main causes of quality deterioration of citrus fruits in Egypt. The early detection and the molecular characterization of the causal (Spiroplasma citri) are vital for revealing its real distribution and for management. Citrus included sweet orange (C. sinensis) and mandarin (C.reticulate Planco) showing typical symptoms of stubborn disease were detected from different fields located at Qualubia, Ismailia and Kafr El-Sheikh governorates in Egypt. The detected S. citri from diseased samples were cultured in the artificial C-3G liquid medium and the color gradually changed from red to yellow, an indication of the presence of *Spiroplasma* in the cultured samples. The Spiroplasma citri, when growing on low-agar medium, forms a fried-egg, fuzzy colonies with occasional surrounding satellite colonies due to the ability of the Spiroplasma cells to move through the agar matrix. DNA extracted from symptomatic samples were used as a template for amplification of products of 675 bp using primer pair Spiralin- f / Spiralin- r by PCR. Furthermore the spiralin gene was cloned, sequenced and the obtained isolate was characterized molecularly by sequence analysis showing close relationship with Egyptian isolates, Iran isolate and France isolate.

Keywords: *Spiroplasma citri*, Stubborn Disease, C-3G Media, PCR, Spiralin Gene, Sequence Analysis.

List of Abbreviations

%	Percentage
°C	Degree Celsius
μ	Micro
μg	Microgram
μl	Microliter
μm	Micrometer
μM	Micromole
3'	Three prime <i>end</i>
5'	Five prime <i>end</i>
A	adenosine
ABC	ATP binding cassette
Arp	Adhesion related protein
AS	Aggregation substance
BLAST	Pagia I agal Alianment Sagrah
Tool	Basic Local Alignment Search
bp	Base pair
C	cytidine
CaCl2	Calcium Chloride
Ccc	Covalently closed circular
CDS	Coding sequence
CI	California isolate
CIE	Crossed immunoelectrophoresis
CPPC	Caribbean Plant Protection Commission
CSD	Citrus Stubborn Disease
CSS	Corn Stunt Spiroplasma
CTAB	Cetyl Trimethyl Ammonium Bromide
DAPI	4',6-diamidino-2-phenylindole
DAS-	Double Antibody Sandwich- Enzyme Linked
ELISA	Immunosorbent Assay
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide Triphosphate
EDTA	Ethylene Diamine Tetra Acetic acid.

EPPO	European Plant Protection Organization
EtOH	Ethanol
FAO	Food and Agriculture Organization
FGE	Fold Gene Expression
Fig	Figure
g	Gram
G	guanosine
ha	Hectare
HC1	Hydrochloridic acid
IAPSC	Inter-African Phytosanitary Council
IC-PCR	Immune-Capture Polymerase Chain Reaction
INRA	French National Institute for Agricultural Research
Kbp	Kilobasepare
KDa	kilodalton
KH ₂ PO ₄	Potassium Dideuterophosphate
1	Litre
LB	Lysogeny Broth
M	Molar
mg	Milligram
mg/ml	Milligram per Milliliter
MgCl2	Magnesium Chloride
MI	Morocco isloate
Min	Minute
ml	Millilitre
MLO	Mycoplasma Like Organism mm
mM	Mill molar
NaCl	Sodium Chlorid
oc	Open circular
OD	Optical density
pCE10	Conjugative plasmid belongs to a family of pheromone-
pCF10	inducible plasmidsin the genus <i>Enterococcus</i>
PCR	Polymerase Chain Reaction
pSci	Spiroplasma citri plasmids
pSku	Spiroplasma kunkelii plasmids
PTS	Phosphotransferase

RAPD	Random Amplified Polymorphic DNA
RF	Replicative form
RNA	Ribonucleic acid
rRNA	Ribosomal RNA
SCARP	Spiroplasma citri adhesion related protein
Sec.	Second sp.
SPV	Spiroplasma virus
SSCP	Single Strand Confirmation Polymorphism
T	Thymidine
Tab.	Table
TAE	Tris- Acetate- EDTA
Taq	Thermophilus aquaticus
Tris	(Hydroxymethyl) amino methane
Tris-EDTA	Tris hydroxymethyl aminoethane-ethylene diamine tetracetic acid
UFU	colony-forming units
UNDP	United Nations Development Programme
USDA	United States Department of Agriculture
UV	Ultraviolet
V	Volt
V/V	Volume per Volume
Vol.	Volume
Xgal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside