# Role of Diffusion Weighted Imaging in Assessment of Primary Malignant Lesion in the liver

Thesis
Submitted for partial fulfillment of Master
Degree in Radiodiagnosis

By

#### **Zinah Saeed Mahmood**

M.B.B.Ch.

Supervised By

#### Prof. Dr. Husaam Abdel Qaader

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

### Dr. Mennatallah Hatem Shalaby

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2014



First and foremost, thanks to Allah the Almighty to whom I relate any success in achieving any work in my life.

I would like to express my very great appreciation to Professor Prof. Dr. Husaam Abdel Qaader, Professor of Radiodiagnosis, Ain Shams University, for his precious instructions, expert supervision and valuable comments during the course of this work.

I would like to offer my special thanks and deep appreciation to Dr. Mennatallah Hatem Shalaby, Lecturer of Radiodiagnosis, Ain Shams University, for his help and valuable advice throughout the performance of this work.

I would also like to express my respect, appreciation and thanks to my **Mother**, for their encouragement.

Last, but not least, I am gratefully thankful to my dear **Husband** who helped me through this thesis with his precious understanding, assistance and careness.



سورة البقرة الآية: ٣٢

# List of Contents

| Title                                         | Page No. |
|-----------------------------------------------|----------|
| List of Abbreviations                         | II       |
| List of Figures                               | IV       |
| List of Cases                                 | VII      |
| List of Tables                                | VIII     |
| Chapter 1 - Introduction                      | 1        |
| Aim of the Work                               | 3        |
| Review of Literature                          |          |
| • Chapter 2- Anatomy of the Liver             | 5        |
| • Chapter 3 - MRI Liver Techniques            | 25       |
| • Chapter 4 - Pathology and MRI Appearance of |          |
| Hepatic Focal Lesions                         | 45       |
| Chapter 5 - Patients and Methods              | 81       |
| Chapter 6 - Results                           | 87       |
| - Illustrated Cases                           | 99       |
| Chapter 7- Discussion                         | 119      |
| Chapter 8 - Summary                           | 135      |
| Chapter 9 - Conclusions                       | 139      |
| Chapter 10 - References                       | 141      |
| Arabic summary                                | A        |

## List of Abbreviations

3D = three dimensional.

**ADC**= apparent diffusion coefficient.

**APA**= arterio-portal anastomoses.

**BH**= breath hold.

**CCA** = cholangiocellular carcinoma.

**CT** = computed tomography.

**CV**= central venule.

**DW MRI**= diffusion weighted magnetic resonance imaging.

**DWI**= diffusion weighted imaging.

**EHE**= epithelioid heamangioendothelioma.

**EPI**= echo planner imaging.

**FFE**= fast field echo.

Fig= figure.

**FLC**= fibrolamellar carcinoma.

**FLL**= focal liver lesions.

**FNH**= focal nodular hyperplasia.

**FOV**=Field of view

**FS**= fast spin.

FSE = fast spin echo.

**GB**= gall bladder.

**Gd** = gadolinium.

**Gd DTPA**= gadolinium diethylenetriamine pentaacetic acid (hepatocyte-specific contrast agent taken by hepatocytes and excreted into biliary system).

**GI**= gastrointestinal.

**GRAPPA**= generalized auto- calibrating partially parallel acquisition.

**GRE**= gradient recalled echo.

**H& E**= hematoxylin and eosin

**HA**= hepatic artery.

**HAP**=Hepatic arterial phase

**HCC**= hepatocellular carcinoma.

**HCV**= hepatitis C virus.

**HMS**= hepatic microvascular subunits.

ICAC=Intra hepatic cholangiocarcinoma

**IHE**=Infantile haemangio endothelioma

**IVC** = inferior vena cava.

min= minute.

MPGs=Motion probing gradients

**MR**= magnetic resonance.

**MRI** = magnetic resonance imaging.

**msec**= millisecond.

**NEX**= number of excitations.

**PSC=** Primary sclerosing cholangitis.

**PV**= portal vein.

**PVP**=Portal venous phase

**RF**=Radiofrequency

**RT**= respiratory triggered.

**SE**= spin echo.

**sec**= second.

**SGE**= spoiled gradient echo

**SI**= signal intensity.

**SNR**=signal to noise ratio.

**SOR**= standard of reference.

**SPAIR** = spectral attenuated inversion recovery (fat suppression

MRI technique).

SSFSE=Single shot fast spin echo

T= tesla.

**TE**= echo time.

THRIVE= high resolution isotropic volume examination.

**TR**= repetition time.

**TSE**= turbo spin echo.

**US**= ultrasonography.

VIBE= volumetric interpolated breath hold examination.

**WIs**= weighted images.

# List of Figures

| Fig.<br>No. | Title                                                  | Page<br>No. |  |
|-------------|--------------------------------------------------------|-------------|--|
| 2,00        | Figures in Review                                      |             |  |
| 2-1         | The Antero-superior surface of the liver.              | 5           |  |
| 2-2         | The Visceral and Posterior surfaces of the liver.      | 6           |  |
| 2-3         | Glisson`s capsule.                                     | 7           |  |
| 2-4         | Segmentation of the liver – Couinaud.                  | 8           |  |
| 2-5         | Surgical segments of the liver.                        | 10          |  |
| 2-6         | Dissection to show the relations of the hepatic        |             |  |
|             | artery, bile duct and portal vein to each other in the | 11          |  |
|             | lesser omentum: anterior aspect.                       |             |  |
| 2-7         | The portal vein and its tributaries.                   | 12          |  |
| 2-8         | Arrangement of the hepatic venous territories.         | 14          |  |
| 2-9         | Ligaments of the liver.                                | 15          |  |
| 2-10        | The liver lobule.                                      | 16          |  |
| 2-11        | Portal tract & hepatic artery in porcine liver.        | 17          |  |
| 2-12        | Normal hepatic veins in axial T1 and T2 weighted       | 19          |  |
|             | imagess.                                               | 19          |  |
| 2-13        | Portal vein anatomy in post Gd T1 weighted images.     | 19          |  |
| 2-14        | Sagittal MR images of the liver.                       | 21          |  |
| 2-15        | Coronal MR image of the liver.                         | 22          |  |
| 2-16        | Normal MR Liver signal intensity on axial T1           | 23          |  |
|             | weighted images.                                       | 23          |  |
| 2-17        | Normal MR Liver signal intensity on axial T2           | 23          |  |
|             | weighted images.                                       | 23          |  |
| 3-1         | Schematic illustrates water molecule movement in       | 33          |  |
|             | tissues of different cellularity.                      | 33          |  |
| 3-2         | Gradient acquisition scheme showing the diffusion      | 36          |  |
|             | sensitizing gradients.                                 | 50          |  |

| 3-3  | Axial diffusion-weighted image (b = 0 sec/mm2) obtained in a 60-year-old woman shows a signal void within the inferior vena cava.                                     | 38 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3-4  | Transverse breath-hold (BH) versus respiratory-triggered (RT) fat-suppressed single-shot SE echoplanar diffusion acquisition in a 78-year old woman with liver cysts. | 42 |
| 4-1  | Pathological classification of hepatic focal lesions.                                                                                                                 | 45 |
| 4-2  | Hepatic cysts on axial T2, axial diffusion weighted images on b:0, b:50, b:500, axial ADC map and axial post Gd T1 WIs.                                               | 47 |
| 4-3  | Pyogenic abscess on axial T2 and axial post Gd T1 WIs.                                                                                                                | 49 |
| 4-4  | Pyogenic abscess on axial contrast enhanced T1 WIs.                                                                                                                   | 49 |
| 4-5  | Adenoma on axial T1 in phase and out phase, axial T2 and axial post Gd T1 WIs in the arterial and portal phases.                                                      | 52 |
| 4-6  | Axial ADC map showing a 3-cm adenoma in the left liver lobe.                                                                                                          | 53 |
| 4-7  | FNH on axial T1 in phase and out phase, axial T2 and axial post Gd T1 WIs in the arterial and equilibrium phases.                                                     | 55 |
| 4-8  | Axial ADC map shows FNH.                                                                                                                                              | 56 |
| 4-9  | Hemangioma on axial T1 and axial T2 WIs.                                                                                                                              | 58 |
| 4-10 | Coronal T2-weighted image with fat suppression shows a giant hemangioma.                                                                                              | 59 |
| 4-11 | Type 1 hemangioma on axial post Gd T1 WIs in the arterial and delayed phases.                                                                                         | 60 |
| 4-12 | Type 2 hemangioma on axial post Gd T1 WIs in the arterial and delayed phases.                                                                                         | 61 |
| 4-13 | Type 3 hemangioma on axial post Gd T1 WIs in the delayed phase                                                                                                        | 62 |

| 4-14               | Axial ADC image shows a hemangioma.                                                                                        | 63 |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|----|
| 4-15               | Stepwise pathway of carcinogenesis for HCC in cirrhosis.                                                                   | 66 |
| 4-16               | HCC on axial T2, axial T1, axial post Gd T1 WIs in the arterial and delayed, axial diffusion WIs b:500 and axial ADC map.  | 69 |
| 4-17               | Fibrolamellar HCC on axial T2 and axial post Gd T1 WIs in the arterial and portal venous phases.                           | 71 |
| 4-18               | Intrahepatic cholangiocarcinoma on axial post Gd T1 WIs in the arterial and delayed phases.                                | 74 |
| 4-19               | Hemangioendothelioma on axial diffusion WIs b:50 and 600 and axial ADC map.                                                | 76 |
| 4-20               | Hypervascular metastases of a carcinoid tumor on axial early phase contrast-enhanced T1-weighted image                     | 79 |
| Figures in Results |                                                                                                                            |    |
| Fig6.1             | Frequency between male and female focal hepatic lesions                                                                    | 88 |
| Fig6.2             | Frequency between different types of focal hepatic lesions                                                                 | 89 |
| Fig6.3             | Frequency of equivocal benign and malignant lesions by conventional modalities and diffusion weighted echo planar          | 90 |
| Fig6.4             | Relative ADC values for different pathological entitie                                                                     | 92 |
| Fig6.5             | 200 versus b 800 b Frequency of signal abnormalities on using                                                              | 93 |
| Fig6.6             | Frequency of signal loss between benign and malignant lesions at b 800                                                     | 95 |
| Fig6.7             | Correlation between sensitivity specificity and accuracy of conventional MR in relation to the pathology                   | 96 |
| Fig6.8             | Correlation between sensitivity specificity and accuracy of diffusion weighted echo planar MR in relation to the pathology | 98 |

## List of Cases

| Cases.<br>No. | Title                                            | Page<br>No. |
|---------------|--------------------------------------------------|-------------|
| 1             | Hepatic cysts.                                   | 99          |
| 2             | Breast carcinoma with metastatic liver deposits. | 100         |
| 3             | Hepatocellular carcinoma.                        | 102         |
| 4             | Liver hemangiomata.                              | 104         |
| 5             | Epithelioid hemangioendothelioma.                | 106         |
| 6             | Hepatocellular adenoma.                          | 108         |
| 7             | Hepatocellular carcinoma.                        | 110         |
| 8             | Cholangiocarcinoma.                              | 112         |
| 9             | Hepatocellular carcinoma.                        | 114         |
| 10            | Metastasis of unknown origin.                    | 116         |

# List of Tables

| Table<br>No. | Title                                                                                                                                                     | Page<br>No. |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 6.1          | Frequency between male and female focal hepatic lesions.                                                                                                  | 87          |
| 6.2          | Descriptive statistics for patients age distribution.                                                                                                     | 88          |
| 6.3          | Number and percentage of different types of focal hepatic lesions.                                                                                        | 88          |
| 6.4          | Frequency of equivocal, benign and malignant lesions as diagnosed by conventional imaging modalities as well as diffusion weighted echo planar technique. | 89          |
| 6.5          | Statistical evaluation for minimum, maximum and mean ADC values of the different focal hepatic lesions.                                                   | 90          |
| 6.6          | Comparison between minimum, maximum and average ADC values of benign and malignant lesions                                                                | 91          |
| 6.7          | Comparison between minimum,maximum and average ADC values of primary and metastatic hepatic malignancies diagnosed by diffusion weighted technique        | 91          |
| 6.8          | Comparison between minimum,maximum and average ADC values of different types of benign lesions estimated by the diffusion weighted technique              | 92          |

| 6.9  | Frequency of signal abnormalities with the use of gradient factor b(200) versus gradient factor b (800)                                                                                                                        | 93 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.10 | Frequency of signal abnormalities between benign and malignant lesions on using high gradient factor b (800)                                                                                                                   | 94 |
| 6.11 | Statistical evaluation concerning the sensitivity specificity and accuracy of conventional MRI in correlation to the pathology                                                                                                 | 95 |
| 6.12 | Statistical evaluation concerning the sensitivity specificity and accuracy of the complementary diffusion weighted echo planar technique in evaluation of focal hepatic lesions with correlation to the pathological diagnosis | 97 |

#### INTRODUCTION

Accurate detection and characterization of focal liver lesions such as hepatocellular carcinoma (HCC) is important for treatment planning. The size and number of lesions can affect therapy. For example, patients with limited resectable metastatic lesions may benefit from curative resection, and patients with fewer than three small HCCs are candidates for liver transplantation. Patients with more extensive disease should instead undergo transarterial chemoembolization, radiofrequency ablation, or systemic chemotherapy (*Heslin et al., 2001*).

Focal liver lesions are diagnosed using ultrasonography (US) and/or computed tomography (CT). Additionally, magnetic resonance imaging (MRI) is preferred when further characterization of these masses is needed. MRI has many advantages (e.g., high contrast resolution, the ability to obtain images in any plane, lack of ionizing radiation, and the safety of using particulate contrast media rather than those containing iodine) that make it a favored modality (Semelka et al, 1992).

Focal nodular lesions characterization with Magnetic resonance imaging (MRI) is based on their morphology, signal intensity on different sequences (HASTE, T1) and on their behaviour with paramagnetic contrast agents (Gadolinium). Specific contrast agents have also been used, but due to their high cost they are not commercially available. However, even with

regular protocol studies, including above mentioned sequences, there are still lesions where an accurate differentiation between benign and malignant lesions is not always achieved (*Vergara et al, 2010*).

Diffusion is the term used for the randomized microscopic movement of water molecules known as Brownian motion. Diffusion is known to be a sensitive parameter in microscopic tissue characterization (*Namimoto et al, 1997*).

Diffusion-weighted MR imaging (DWI), theoretically described as far back as the 1950s and 1960s by *Carr and Purcell* (1954) and *Stejskal and Tanner* (1965), has become an established method in neuroradiology since the introduction of the intravoxel incoherent motion technique by *Le Bihan et al* (1988).

DWI examinations have many technical restrictions such as respiratory, cardiac, or peristaltic physiologic activity, all of which affect image quality and make evaluation, which is very sensitive to motion, more difficult. Consequently, prior to the development of fast MRI techniques, DWI was limited to cranial examinations. With the development of echo-planar imaging (EPI), a fast MRI technique, radiologists have overcome the long imaging times and related artifacts of conventional techniques, and DWI is now available for abdominal evaluations as well (*Coenegrachts et al*, 2007).

DW-MRI can help characterize focal hepatic lesions by enabling measurement of lesion apparent diffusion coefficient (ADC) (*Parikh et al, 2008*).

DW imaging could potentially improve care of patients with cancer and cirrhosis by improving liver lesion detection over that achieved with standard breath-hold T2-weighted imaging (*Parikh et al*, 2008).

Diffusion weighted technique should be used as an additional sequence to supplement conventional MRI protocol studies for proper characterization of focal liver lesions (*Vergara et al, 2010*).

#### **AIM OF WORK**

The aim of this study is to show the growing and useful role of DW-MRI in the characterization of hepatic focal lesions for better patient management plan.