

ثبيكة المعلومات الجامعية

# Cieria Territa Con Control Con





ثببكة المعلومات الجامعية



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيل



# جامعة عين شمس

التوثيق الالكتروني والميكروفيلم



نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات



## يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار % 40-20 منوية ورطوبة نسبية من 20 – 40 % To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %



ثبكة المعلومات الجامعية





ثبكة المعلومات الجامعية



بعض الوثاء

الأصلية تالفة

## THE PERFORMANCE OF HOLSTEIN COWS UNDER EL-FAYOUM CONDITIONS

# By AMR MOHAMED FAYZ HAIDER

B.Sc. Agric. (Animal Production, 1995)
Faculty of Agriculture El-Fayoum
Cairo University

#### **THESIS**

Submitted in Partial Fulfillment of the Requirements for
The Degree of Master of Science
in
Agricultural Sciences
(Animal Production – Physiology)

Department of Animal Production Faculty of Agriculture, El-Fayoum Cairo University

000-

#### SUPERVISION COMMITTEE

# THE PERFORMANCE OF HOLSTEIN COWS UNDER EL-FAYOUM CONDITIONS

# By AMR MOHAMED FAYZ HAIDER

#### **THESIS**

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Agricultural Sciences (Animal Physiology)
Department of Animal Science
Faculty of Agriculture, El-Fayoum,
Cairo University

| Su | pervised | by: |
|----|----------|-----|

1. Prof. Dr. Mamdouh Kamel Shebaita. M Les Saule

Professor of Animal Physiology, Department of Animal Science, College of Agriculture, El-Fayoum, Cairo University.

Assistant professor of Animal Physiology, Department of Animal Science, College of Agriculture, El-Fayoum, Cairo University.

3. Dr. Mona Abdel-Tawab El-Khashab. Mona Abdel-Tawab El-Khashab

Assistant professor of Animal Physiology, Department of Animal Science, College of Agriculture, El-Fayoum, Cairo University.

#### APPROVAL SHEET

## THE PERFORMANCE OF HOLSTEIN COWS UNDER EL-FAYOUM CONDITIONS

By

#### AMR MOHAMED FAYZ HAIDER

#### **THESIS**

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Agricultural Sciences (Animal Physiology)
Department of Animal Science
Faculty of Agriculture, El-Fayoum,
Cairo University

| Approved as | s to style and contents by:                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------|
| 1. Prof. D  | r. Medhat Hussein Khalil M.H. Khalil                                                                       |
|             | ofessor of Animal physiology, Department of Animal Science,<br>ollege of Agriculture, El-Azhar University. |

2. Prof. Dr. Mamdouh Kamel Shebiata.

Professor of Animal physiology, Department of Animal Science, College of Agriculture, El-Fayoum, Cairo University.

Professor of Animal nutrition, Department of Animal Science, College of Agriculture, El-Fayoum, Cairo University.

#### **ABSTRACT**

The present study was carried out using eight Holstein cows (1<sup>st</sup> and 2<sup>nd</sup> parity). Milk samples were taken fortnightly from evening and morning milking of each cow, and analyzed for butter fat, protein, lactose, solids not-fat, total solids, ash, calcium, and phosphorus. The effects of the parity, stage of lactation and milking time on the milk yield and the composition of milk have been investigated. The relationship between partial milk yield and total milk yield was calculated. Serum blood samples were also taken from the cows fortnightly after evening and morning milking and analyzed for total protein, albumin, globulin, glucose, cholesterol, triglycerides, calcium and phosphorus. The effects of parity, stage of lactation and milking time on serum constituents have been investigated. The data of milk yield showed that there were significant effects of parity and lactation weeks. Also there was significant effect of parity and lactation weeks on milk composition. Moreover significant effect of time of milking on milk yield and its composition was observed. There was significant effect of parity on blood serum, total protein, globulin, albumin/globulin, cholesterol, calcium and triglycerides while insignificant effect was found for albumin, glucose, phosphorus and calcium / phosphorus. Serum total protein and calcium were affected significantly by lactation weeks while albumin, globulin, cholesterol, triglycerides, glucose, and phosphorus were insignificantly affected. There was significant effect of milking time on total protein, albumin, globulin, cholesterol, triglycerides, glucose, and calcium, however, albumin/globulin ratio and phosphorus were insignificantly affected, Highly positive correlations were found between each of udder measurements and total milk yield of both 1st and 2<sup>nd</sup> parity. Parity had a highly significant effect on all of the examined udder measurements, which increased from the first to the second parity. Lactation weeks had a highly significant effect on all of the udder measurements. Phenotypic correlation coefficient among different udder measurements were positive and highly significant in both 1st and 2nd parity. All correlation coefficient between body measurements and total milk yield were positive. Parity had a highly significant effect on all body measurements, which increased from the first to the second parity. Lactation weeks had insignificant effect on all of body measurements. Correlation values between different values body measurements were positive and significant.

Key words: (Holstein, milk, yield, milk composition, blood serum constituents, body weight, udder and body measurements, parity, weeks of lactation).

`)

#### **ACKNOWLEDGMENT**

First and foremost all of my praises and limitless thanks are to **Allah** who gave me the capability to do this work.

I would like to express my gratitude to Prof. **Dr. M.K. Shebaita,** Professor of Animal Physiology, Department of Animal Science, College of Agriculture at El-Fayoum, Cairo University, for his direct supervision, advises, facilitating for obtaining the material of this study and his valuable comments on the thesis.

It is also my pleasure to express my appreciation and deep gratitude to **Dr A. R. Abdel-Rahman**, Assistant professor ,Department of Animal Science ,College of Agriculture at El-Fayoum ,Cairo University for his supervision ,and the revision of this work.

My grateful is extended to **Dr.M. A. El-Khashab**, Assistant professor, Department of Animal Science, College of Agriculture at El-Fayoum, Cairo University for her help in writing this work, and continuous supervision throughout this study.

Sincere thanks to all of the staff members of the Department of Animal Science, College of Agriculture at El-Fayoum, Cairo University, for their helpful cooperation during this study.

I would like to express my great gratitude to my wife for her patience and for her help.

### CONTENTS

| Subject                                                           | Page |
|-------------------------------------------------------------------|------|
| I. INTRODUCTION                                                   | 1    |
| II. REVIEW OF LITERATURES                                         | 3    |
| 1.Blood biochemical constituents:                                 | 3    |
| 1.1. Effect of parity on blood biochemical constituents:          | 5    |
| 1.2. Effect of lactation weeks on blood biochemical constituents  | 10   |
| 2. Total milk yield:                                              | 19   |
| 2.1. Factors affecting milk yield:                                | 21   |
| 2.1.1. Effect of parity on milk yield                             | 22   |
| 2.1.2. Effect of weeks on milk yield                              | 28   |
| 3. Chemical constituents of milk:                                 | 31   |
| 3.1. Butter fat percentage:                                       | 32   |
| 3.1.1. Effect of parity on milk butter fat percentage             | 34   |
| 3.2. Protein content:                                             | 35   |
| 3.2.1. Effect of parity on milk protein                           | 36   |
| 3.3. Lactose(milk sugar):                                         | 38   |
| 3.3.1. Effect of parity on milk lactose                           | 39   |
| 3.4. Milk minerals(ash):                                          | 40   |
| 3.4.1. Effect of parity on milk minerals                          | 42   |
| 3.5. Effect of parity on solids not-fat and total solids          | 43   |
| 3.6. Effect of lactation weeks on butter fat percentage           | 43   |
| 3.7.Effect of lactation weeks on milk protein percentage          | 46   |
| 3.8. Effect of lactation weeks on lactose                         | 49   |
| 3.9. Effect of lactation weeks on solids not-fat and total solids | 50   |
| 3.10. Effect of lactation weeks on milk minerals (ash)            | 52   |
| 4. Udder conformation                                             | 54   |
| 5. Relationship between udder measurements and total milk yield   | 54   |

| 6. Factors affecting udder conformation:                               | 56 |
|------------------------------------------------------------------------|----|
| 6.1. Effect of parity on udder measurements:                           | 57 |
| 6.1.1 Changes in udder measurements during different lactations.       | 57 |
| 6.2. Effect of lactation weeks on udder measurements:                  | 58 |
| 6.2.1. Changes in udder measurements during lactation period           | 58 |
| 7. Relationships among udder measurements                              | 59 |
| 8. Body measurements                                                   | 60 |
| 9. Relationships between body measurements and total milk yield        | 60 |
| 10. Changes in body measurements during different lactations           | 65 |
| 10.1.Effect of parity on body measurements                             | 65 |
| 10.2. Changes in body weight and measurements during lactation period. | 65 |
| 11. Relationships among body measurements                              | 67 |
| 12. Initial milk yield                                                 | 69 |
| 13. Relationships between partial milk yield and total milk yield.     | 70 |
| 14. Diurnal variations in milk yield and its composition               | 73 |
| 15. Diurnal variations of blood serum metabolic profiles               | 83 |
| III. MATERIALS AND METHODS                                             | 89 |
| 1. Experimental animals                                                | 89 |
| 2. Management and feeding                                              | 89 |
| 3. Blood samples:                                                      | 90 |
| 3.1. Blood analysis:                                                   | 91 |
| 3.1.1. Total protein                                                   | 91 |
| 3.1.2. Albumin                                                         | 91 |
| 3.1.3. Globulin                                                        | 91 |
| 3.1.4. Serum glucose                                                   | 91 |
| 3.1.5. Cholesterol                                                     | 92 |
| 3.1.6. Triglycerides                                                   | 92 |

| 3.1.7. Serum calcium                                             | 92  |
|------------------------------------------------------------------|-----|
| 3.1.8. Inorganic phosphorus                                      | 92  |
| 4. Milk samples:                                                 | 92  |
| 4.1. Milk analysis:                                              | 93  |
| 4.1.1. Total solids                                              | 93  |
| 4.1.2. Fat                                                       | 93  |
| 4.1.3. Solids not-fat                                            | 93  |
| 4.1.4. Total protein                                             | 93  |
| 4.1.5. Lactose                                                   | 93  |
| 4.1.6. Ash                                                       | 93  |
| 4.2. Phosphorus content                                          | 93  |
| 4.3. Calcium content                                             | 93  |
| 5. Udder measurements                                            | 93  |
| 6. Body weight and measurements                                  | 93  |
| 7. Statistical analysis                                          | 94  |
| IV. RESULTS AND DISCUSSION                                       | 96  |
| 1.Blood biochemical constituents:                                | 96  |
| 1.1. Effect of parity on blood biochemical constituents:         | 96  |
| 1.2. Effect of lactation weeks on blood biochemical constituents | 103 |
| 2. Factors affecting milk yield:                                 | 114 |
| 2.1. Effect of parity on milk yield                              | 114 |
| 2.2. Effect of lactation weeks on milk yield                     | 117 |
| 3. Factors affecting chemical constituents of milk:              | 120 |
| 3.1. Effect of parity                                            | 120 |
| 3.2. Effect of lactation weeks                                   | 126 |
| 4. Relationships between udder measurements and total milk yield | 136 |
| 5. Factors affecting udder measurements:                         | 139 |
| 5.1. Effect of parity on udder measurements:                     | 139 |

| VII. ARABIC SUMMARY                                               | 203   |
|-------------------------------------------------------------------|-------|
| VI. REFERENCES                                                    | 172   |
| V. SUMMARY AND CONCLUSSION                                        | 165   |
| 13. Diurnal variations of blood serum metabolic profiles          | 159   |
| 12. Diurnal variations in milk yield and its composition          | . 156 |
| 11. Relationships between partial milk yield and total milk yield | 153   |
| 10. Relationships among body measurements                         | 151   |
| 9. Effect of lactation weeks on body measurements                 | 150   |
| 8. Effect of parity on body measurements                          | 149   |
| yield                                                             | 145   |
| 7. Relationships between body measurements and total milk         |       |
| 6. Relationships among udder measurements                         |       |
| 5.2. Effect of lactation weeks on udder measurements:             | 142   |

## LIST OF TABLES

| Table number                                                       | Page |
|--------------------------------------------------------------------|------|
| 1. Comparative composition of blood plasma and milk of the         |      |
| cow                                                                | 4    |
| 2. The concentration of blood serum glucose in normal lactating    |      |
| dairy cows                                                         | 6    |
| 3. Average total cholesterol in blood serum or plasma of dairy     |      |
| cows                                                               | 8    |
| 4. Actual 305-day milk yield and total milk yield for different    |      |
| parities                                                           | 23   |
| 5. Blood precursors of milk constituents in the ruminants          | 33   |
| 6. Correlation of coefficient between initial milk yield and total |      |
| milk yield for different breeds                                    | 70   |
| 7. Relationship between part lactation milk yield and total milk   |      |
| yield in the first and second lactation for cows                   | 71   |
| 8. Relationship between 90-day milk yield and 305-day yield        |      |
| and total milk yield for Holstein-Friesian cattle                  | 72   |
| 9. Chemical analysis of the feed                                   | 90   |
| 10. Mean ± SE of blood serum composition                           | 97   |
| 11. Analysis of variance for data of blood serum composition       | 99   |
| 12. Effect of weeks of lactation on blood serum composition        | 104  |
| 13. Effect of parity on milk yield and composition                 | 115  |
| 14. Effect of lactation weeks on milk yield                        | 119  |
| 15. Analysis of variance for data of milk yield                    | 121  |
| 16. Analysis of variance for the effect of milking time on milk    |      |
| yield                                                              | 121  |
| 17. Analysis of variance for data of milk composition              | 122  |