UPDATES ON OPTIMAL TRANSFUSION THERAPY

Essay

For partial fulfillment of Master Degree in Anesthesiology

%y John Emil Riad Mina

M.B.B.Ch Faculty of Medicine – Ain Shams University

Under Supervision of:

Prof .Dr. Naglaa Mohammed Ali

Professor of Anesthesiology, ICU, and Pain management Faculty of Medicine – Ain Shams University

Ass. Prof. Dr. Adel Mohamad Alansary

Ass. Professor of Anesthesiology, ICU and Pain management Faculty of Medicine – Ain Shams University

Dr. Mai Mohsen Abdel Aziz

Lecturer of Anesthesiology, ICU and Pain management Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2015

First and foremost, I raise my sincere thanks and deepest gratitude to Almighty **God**. The most merciful and most gracious who gave me endless gifts; one of them is the ability to carry out this work.

I wish to express my deep and sincere gratitude to **Prof. Dr.**Naglaa Mohammed Ali, Professor of Anesthesiology, ICU, and Pain management, Faculty of Medicine, Ain Shams University. The strong support I received throughout this work will never be forgotten, not only from a supervisor but from a true and valuable senior.

I would like to convey my great appreciation to **Prof. Dr. Adel Mohamad Alansary**, Assistant professor of Anesthesiology, ICU, and Pain management, Faculty of Medicine, Ain Shams University. Words cannot convey my deep gratitude and thankfulness not only for that work but also for much and much beyond.

Thanks to **Dr. Mai Mohsen Abdel Aziz**, Lecturer of Anesthesiology, ICU and Pain management, Faculty of Medicine, Ain Shams University for her continuous encouragement in completing this work. I am totally speechless for the time of teaching during which I was trained under her supervision.

I would also like to express my deepest gratitude and appreciation to all members of Anesthesiology, ICU and Pain management department, Faculty of Medicine, Ain Shams University and to all members who helped me completing this work especially **Prof. Dr. Nahed Effat,** Professor of Anesthesiology, ICU, and Pain management, Faculty of Medicine, Ain Shams University.

الأحدث عن النقل المثالي للدم

رسالة

توطئة للحصول على درجة الماجستير في علم التخدير

مقدمة من

الطبيب / جون إميل رياض مينا

بكالوريوس الطب و الجراحة كلية الطب-جامعة عين شمس

تحت إشراف

رد/ نجلاء محمد علي

أسناذ النَّخير و العناية المركزة و عراج الألم كلية الطب-حامعة عين شمس

أ.مرد/عادل محمد الأنصاري

أسناذ مساعد النُخدير و العناية المركزة و عراج الألم كلية الطب-جامعة عين شمس

د/ مي محسن عبد العزيز

مدرس النُخدير و العناية المركزة و علاج الألم كلية الطب-جامعة عين شمس

> کلیہ الطب جامعہ عین شمس ۲۰۱۵

List of Content

Subject	Page
LIST OF ABBREVIATIONS	I
LIST OF TABLES	IV
LIST OF FIGURES	V
Introduction	
Aim of the Essay	4
Review of Literature	
Chapter (1): The physiology of blood and blood products	5
Blood as a circulatory fluid	7
Bone marrow	7
Blood components	10
 Hemostasis 	31
Anticlotting mechanisms	38
Chapter (2): Transfusion of blood and blood products	41
• Indications	42
 Complications 	56
 Processing and testing 	69

List of Content

Subject	
Chapter (3): Artificial blood or blood substitutes	78
Advantages over human blood	80
• Risks	82
Current therapeutics	82
 Perfluorocarbon based 	82
 Hemoglobin based 	85
 Hyperbranched polymer protected porphyrins 	89
 Potential techniques 	90
• Other functions than O ₂ carrying	93
Bloodless surgery	94
• The future	97
Summary and Conclusion	98
References	104
Arabic Summary	H H

List of Abbreviations

AABB : American Association of Blood Banks **ADP** : Adenosine Diphosphate APC : Activated Protein C **aPTT** : activated partial thromboplastin time **ATP** : Adenosine Triphosphate **bFGF** : Basic fibroblast growth factor **BPG** : Bisphosphoglycerate : Cytomegalovirus **CMV EDTA** : Ethylenediaminetetraacetic acid **ENA** : Extractable Nuclear Antigen **FDA** : Food and Drug Administration **FDP** : Fibrinogen Degradation Product **FNHTR** : Febrile Non Hemolytic Transfusion Reaction **GM-CSF** : Granulocyte Macrophage Colony Stimulating Factor : Glycerate 3-phosphate **GP** HbA1c : Hemoglobin A1c **HBOC** : Hemoglobin-based oxygen carriers **HBP** : Hyperbranched polymer : Hematocrit Hct HIV : Human Immunodeficiency Virus **HLA** : Human leukocyte antigen **HPA** : Human platelet antigens

List of Abbreviations

HSC : Hematopoietic Stem Cell

HTD : Hard to Treat Diseases

HTLV : human T-cell lymphotropic virus

IGF : Insulin Growth Factor

IIT Madras : Indian Institute of Teechnology at Madras

IL : Interleukin

INR : International Normalized Ratio

LEH : Liposome-encapsulated hemoglobin

MCD : Mean Corpuscular Diameter

MCH : Mean Corpuscular Hemoglobin

MCHC : Mean Corpuscular Hemoglobin Concentration

MCV : Mean Corpuscular Volume

MIP : Macrophage Inflammatory Protein

NADH : Dihydronicotiamide Adenine Dinucleotide

PAI : Plasminogen activator inhibitor

PAR : Protease Activated Receptor

PDGF : Platelet Derived Growth Factor

PECAM: Platelet endothelial cell adhesion molecule

PEG : polyethylene glycol

PF : Platelet Factor

PFBOC : Perfluorocarbon-based oxygen carriers

PT : Prothrombin Time

List of Abbreviations

RANTES	: Regulated on Activation, Normal T Expressed and Secreted
RBC	: Red Blood Cell
Rh	: Rhesus
SCF	: Stem cell Factor
SOD	: Super Oxide Dismutase
t- PA	: Tissue type Plasminogen Activator
TA- GVHD	: Transfusion-Associated Graft Versus Host Disease
TGF	: Tissue Growth Factor
TRALI	: Transfusion Related Acute Lung Injury
TRICC	: Transfusion requirements in critical care
u- PA	: urokinase type Plasminogen Activator
VEGF	: Vasoactive Endothelial Growth Factor
vWF	: Von Willebrand Factor
WBC	: White Blood Cell

List of Tables

No.	Table	Page
1-	Normal values for the cellular elements in human blood	11
2-	Characteristics of human red cells	14
3-	Summary of ABO system	21
4-	Some of the proteins synthesized by the liver	28
5-	System for naming blood-clotting factors	30
6-	RBC Transfusion recommendations for hospitalized	43
7-	Indications for Transfusion of Plasma Products	48
8-	Indications for Transfusion of Platelets in Adults	50
9-	Indications for Transfusion of Platelets in Neonates	51
10-	Indications for Transfusion of Cryoprecipitate	52
11-	Treatment of hemophilias and von Willebrand disease by concentrates of factors VIII	55
12-	Noninfectious serious hazards of transfusion	57
13-	Infectious complications of blood transfusions	58
14-	Pretransfusion Testing	71
15-	Special processing of RBC for transfusion	73
16-	PFCOC current therapeutics	84
17-	HBOC current therapeutics	88

List of Figures

No.	Figure	Page
1-	Changes in red bone marrow cellularity with age	8
2-	Development of various elements of the blood from bone marrow cells	9
3-	Blood is made up of multiple components	10
4-	Platelet secretory function	13
5-	Diagrammatic representation of a molecule of hemoglobin A	16
6-	Reaction of heme with O ₂	17
7-	Development of human hemoglobin chains	19
8-	Red cell formation and destruction	20
9-	Antigens of the ABO system on the surface of red blood cells	22
10-	Red cell agglutination in incompatible plasma	22
11-	The waterfall or cascade model of coagulation	34
12-	The cell-based model of hemostasis	38
13-	Fibrinolysis (simplified)	40
14-	The thromboelastogram machine	46
15-	A red blood cell and its substitutes	79
16-	Oxycyte	84
17-	Other types of PFC based blood substitutes	84

List of Figures

No.	Figure	Page
18-	Hemoglobin based blood substitutes and their processing	86
19-	Hemopure	89
20-	Micelle structure	91
21-	A proposed design for a respirocyte	93
22-	Intraoperative autologous blood transfusion device	95

Introduction

Blood transfusion is a life saving intervention. Every second, in every country of the world, someone needs blood. Surgery, trauma, severe anemia and complications of pregnancy are among the clinical conditions that demand blood transfusion. Whatever the degree of development of a health care system, transfusion is the only option for survival of many patients (*Malar*, 2013).

From donor to recipient, raw blood will undergo a succession of processing events before eventually becoming a qualified, recipient-adapted finished product (*Beauplet*, 2001).

Shortages may arise from a fall in supply, a lack of national blood transfusion services, policies, appropriate infrastructure, trained personnel, or financial resources to support the running of a voluntary non remunerated donor transfusion service. There is an urgent need to develop innovative ways to recruit and retain voluntary low-risk blood donors (*Osaro and Charles*, *2011*).

Blood banks screen donors for risk factors and test donated blood to reduce the risk of transfusion-related infections, but they occasionally still occur. Blood is a port of transmitting hepatitis B, hepatitis C, HIV, syphilis, malaria (*Sharma and Tyler*, 2011).

Unnecessary blood transfusion when the availability of simpler, less expensive strategies that could provide equal or greater benefit not only does expose patients needlessly to the risk of potentially fatal transfusion reactions and infections, it also worsens the gap between supply and demand and contributes to shortages of blood and blood products for patients who are really in need (*Osaro and Charles*, 2011).

These strategies should include the correction of anemia using pharmacological measures as the use of antifibrinolytics to prevent bleeding and the use of erythropoietin and oral and intravenous iron and use of nonpharmacologic measures as preoperative autologous blood transfusion, perioperative red blood cell salvage and normothermia (*Osaro and Charles*, 2011).

The demand for more blood substitutes began during the Vietnam War as wounded soldiers were unable to be treated at hospitals due to blood shortage. These worldwide blood shortages have led scientists to synthesize and test what is called "Artificial blood" to bridge the gap between demand and supply (*Sarkar*, 2008).

These efforts have essentially focused on the ability of red blood cells to carry oxygen. Hence, most of the products that are in advanced-phase clinical trials are derivatives of hemoglobin and are known as hemoglobin-based oxygen carriers. However, to date, no oxygen-carrying blood substitutes are approved for use by the US Food and Drug Administration (*Grethlein*, 2012).

Hopefully, as better blood substitutes are developed and enter routine clinical use, the need for blood transfusions in the operative and trauma settings will decrease. Large-scale production of blood substitutes would also help to meet the anticipated increase in demand for blood as the population increases and the blood donor pool diminishes.

AIM OF THE ESSAY

The goal of this work is to focus on blood and blood products as regard preparation, storage, indications for transfusion, complications and methods to avoid such complications by optimal use of each product. Also, the recent solution "Oxygen carrying blood substitutes" or what is called "Artificial blood" as a new method to overcome many of these complications.