

Faculty of Girls for Arts, Science and Education Mathematics Department

PROBLEMS OF GEOMETRIC FIELD THEORIES

By

Mona Mahmoud Kamal Mahmoud

Assistant lecturer in Mathematics department

B. Sc. in Mathematics (2007)

M. Sc. in Applied Mathematics (2011)

Faculty of Girls for Arts, Science and Education

SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
FACULTY OF GIRLS,
AIN SHAMS UNIVERSITY
CAIRO, EGYPT
OCT. 2014

 $\ \, \textcircled{\text{C}}$ Copyright by Mona Mahmoud Kamal Mahmoud, 2014

Title of the Ph. D. Thesis

PROBLEMS OF GEOMETRIC FIELD THEORIES

Name of the Candidate

Mona Mahmoud Kamal Mahmoud

B.SC. IN MATHEMATICS (2007)

 $\mbox{M. SC. IN APPLIED MATHEMATICS (2011)} \\ \mbox{FACULTY OF GIRLS FOR ARTS, SCIENCE AND EDUCATION}$

Submitted to Faculty of Girls, Ain Shams University

Supervisors:		
Prof. M. I. Wanas		
Professor of Relativistic Cosmology	M. I. Wanas	
Astronomy Department		
Faculty of Science, Cairo University		
Prof. Samia S. Elazab		
Professor of Applied Mathematics	Samia S. Elazab	
Head of Mathematics Department		
Faculty of Girls, Ain Shams University		

AIN SHAMS UNIVERSITY FACULTY OF GIRLS DEPARTMENT OF MATHEMATICS

The undersigned hereby certify that they have read and recommend to the Faculty of Girls for Arts, Science and Education for acceptance a thesis entitled "Problems of Geometric Field Theories" by Mona Mahmoud Kamal Mahmoud for the degree of Doctor of Philosophy.

	Dated: <u>Oct. 2014</u>
Research Supervisors: _	
•	M. I. Wanas
	Samia S. Elazab

AIN SHAMS UNIVERSITY FACULTY OF GIRLS

Date: Oct. 2014

Author: Mona Mahmoud Kamal Mahmoud

Title: Problems of Geometric Field Theories

Department: Mathematics

Degree: Ph.D. Convocation: Nov. Year: 2014

Permission is herewith granted to Ain Shams University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

To My Loving Parents and $My \ beautiful \ daughter \\ \heartsuit \ Mariam \ \heartsuit$

Table of Contents

Ta	able	of Con	itents	vii
Li	ist of	Table	\mathbf{s}	ix
Li	ist of	Figur	es	x
Li	ist of	Abbre	eviations	xiv
\mathbf{A}	bstra	act		xvii
\mathbf{S} ι	ımm	ary		xix
A	ckno	wledge	ements	xxi
1	Geo	\mathbf{metry}	and Field Theories	1
	1.1	Introd	<mark>luction</mark>	. 2
	1.2	Riema	annian Geometry and Field Theories	. 4
		1.2.1	Brief Review of Riemannian Geometry	. 5
		1.2.2	The General Theory of Relativity	. 6
		1.2.3	The $f(R)$ Theories	. 8
		1.2.4	Einstein-Maxwell's Theory	. 10
		1.2.5	Discussion and Problems	. 11
	1.3	AP-G	eometry and Field Theories	. 13
		1.3.1	Brief Review of AP-Geometry	. 13
		1.3.2	Teleparallel Equivalent of General Relativity	
		1.3.3	The Generalized Field Theory	. 17
		1.3.4	$\mathrm{M}\phi$ ller's Theory	. 18
		1.3.5	The New General Relativity	. 19
		1.3.6	The $f(T)$ Theories	. 21
		1.3.7	Discussion and Problems	. 21
	1.4	Riema	ann-Cartan Geometry and Field Theory	. 24
		1.4.1	A Brief Review of Einstein non-symmetric geometry	. 24
		1.4.2	Einstein Non-Symmetric Unified Field Theory	. 26
		1.4.3	Discussion and Problems	. 28
	1.5	Gener	al Discussion and Aim of the Present Work	. 30

2	$\mathbf{A} \mathbf{S}$	uggested Theory in the PAP-Geometry	37
	2.1	Introduction	38
	2.2	The Underlying Geometry: PAP-Geometry	39
		2.2.1 PAP-Linear Connection	40
		2.2.2 Tensor Derivatives	41
		2.2.3 $$ The Parameterized Torsion Tensor and Basic Tensor $$	42
		2.2.4 Second Order Tensors and Scalars	42
		2.2.5 Parameterized Curvature and Anti-curvature Tensors	44
		2.2.6 Path Equations	48
		2.2.7 Special Cases	48
	2.3	Choice of a Parameterized Lagrangian Density	49
	2.4	An Action Principle and Field Equations of the Theory	51
	2.5	Bazanski Approach and Equations of Motion of the Theory	55
	2.6	Discussion	57
3	Ext	eaction of Physics	61
	3.1	Introduction	62
	3.2	Analysis of the Field Equations	62
		3.2.1 The Symmetric Part of the Field Equations	62
		3.2.2 The Skew Part of the Field Equations	64
	3.3	Weak Field Approximation	67
		3.3.1 $$ The Linearized Symmetric Part of the Field equations	70
		3.3.2 The Linearized Skew Part of the Field equations	74
		3.3.3 The Type of a Certain Geometric Structure	76
	3.4	Physical meaning of the Parameter b	80
	3.5	The Case of Spherical Symmetry	83
		3.5.1 PAP Structure with Spherical Symmetry	83
		3.5.2 The case of Pure Gravity	90
		3.5.3 The Exterior Solution	93
C	onclu	ding Remarks and suggestions for Future Work	97
\mathbf{R}_{0}	efere	nces	110

List of Tables

Table 1.1:	AP Second Order World Tensors
Table 1.2:	Comparison Between Different Geometries
Table 1.3:	Comparison Between Field Theories
Table 2.1:	PAP Second Order World Tensors
Table 2.2:	Comparison Between Geometries
Table 2.3:	Comparison Between GR and the Suggested Theory 60
Table 3.1:	Expansion of the Geometric Objects 69
Table 3.2:	Type Analysis
Table 3.3:	Comparison Between Non-linear Geometric Field Theories 105

List of Figures

Figure 2.1:	AP and Riemannian geometries as a special cases of the P.	ΆP
	-geometry	49
Figure 3.1:	The role of the Parameter b	109

List of Abbreviations

AP Absolute Parallelism

BB Building Blocks

CMBR Cosmic Microwave Background Radiation

Ein-Max Einstein-Maxwell

ENG Einstein Non Symmetric Geometry

ENT Einstein Non Symmetric Theory

EM Electromagnetism

GFT Generalized Field Theory

GR General Relativity

LHS Lift Hand Side

M Manifold

MT $M\phi$ ller Theory

NGR New General Relativity

PAP Parameterized Absolute Parallelism

Phen. Phenomenological

RC Riemann-Cartan

RHS Right Hand Side

Riem. Riemannian

SG Symmetry Group

SN Super Nova

SR Special Relativity

TEGR Teleparallel Equivalent of General Relativity

n Dimension of the space

N Natural number

() Used for symmetrization

[] Used for anti-symmetrization