AIN SHAMS UNIVERSITY

Faculty of Computer & Information Sciences Information Systems Department

A Hybrid Approach for Intelligent Recommender Systems

A Thesis submitted in partial fulfillment of the requirements for the degree of PhD in Computer and Information Sciences

To

Department of Information Systems
Faculty of Computer and Information Sciences
Ain Shams University

By Wedad Hussein Reyad

M.Sc. in Computer and Information Sciences (2006)
Ain Shams University

Under the supervision of

Prof. Dr. Tarek Fouad Gharib

Information Systems Department
Faculty of Computer and Information Sciences
Ain Shams University

Prof. Dr. Mostafa Gadal-Haqq M. Mostafa

Computer Science Department
Faculty of Computer and Information Sciences
Ain Shams University

Dr. Rasha Mohammed Ismail

Information Systems Department
Faculty of Computer and Information Sciences
Ain Shams University

Acknowledgement

First of all thanks to God for giving me the will and strength to finish this work. Great thanks to every member of my family who has pushed me to go on and pursue my dream.

I would like to deeply thank Prof. Dr. Tarek Gharib for believing in me and always pushing me over finish lines in times when I did not have the motivation to do so.

I would also want to thank Prof. Dr. Mostafa Gadal-Haqq for guiding my thinking and always finding a way to get the work out of difficult situations.

I would also like to thanks Dr. Rasha Ismail for being my friend, my mentor and my support all through the work.

Finally, I would like to thank everyone (friends, professors or students) who trusted in my abilities, even more than I did, and pushed me to always be better.

Abstract

The anticipation of the user's next move is one the main techniques needed for web personalization. Next page prediction aims at discovering the next page the user will visit for offering recommendations as well as pre-fetching to reduce network latency. In this work we proposed a next page prediction system that is based on a hybrid framework combining memory-based and model based recommender systems.

We offered three different representations of user preferences and tested their results on different datasets. The first representation reflected usage data by building a user-page matrix. The second approach incorporated semantic information to build a user-concept matrix. Finally the third approach offered two methods to combine usage and semantic data. The approaches yielded a 12.8% and 33% improvement in prediction accuracy for the first two approaches respectively, and a 47.3% and 54.3% for the combined approach. The system also used clustering to group users and frequent patterns which caused the prediction time to be reduced by an average of 69.2%.

Summary

The world wide web (WWW) is becoming the most accessed source for searching for information and performing day-to-day activities. It is also becoming an active medium for conducting business. With this proliferation of the internet, the amount of information and products available through it is increasing exponentially. The amount of information available made the customization of content and the recommendation of products of crucial importance.

All these challenges motivated the introduction of web recommender systems as a means for representing user preferences and recommending suitable objects. There are two approaches to recommender systems, memory-based and model-based methods. Memory-based methods store all ratings of users to generalize from them, while model-based methods develop a model of user behavior.

In this thesis, we are proposing a framework for the next page prediction that uses techniques from both memory-based and model-based recommender systems. The system builds a user-item matrix representing user preferences. Clustering is then applied to this matrix to group users with similar preferences together. The clustering results are then used to group the frequent access patterns mined from server logs into groups corresponding to clusters.

When a new user accesses the website, he is matched to his cluster, or the nearest cluster if he/she is an unknown user. To make a prediction the set of

patterns assigned to the user's cluster are searched for matching patterns. We suggested three different representations of the user-item matrix.

The first representation of user preferences is a user-page matrix showing the average time spent by each user on each page. We tested this approach on three different datasets, namely, the logs from the NASA, University of Saskatchewan, and Ain Shams University web servers. The clustering showed an average reduction in the prediction time by 22.2%, 44.4% and 69.8 % for the three datasets respectively. The approach also increased the overall prediction accuracy by 0.5%, 0.4% and 12.8% respectively.

We next suggested the introduction of semantic information to the process. A user-concept matrix was suggested to represent the set of concepts the user is interested in as extracted from the text of the pages he/she visited. We tested this approach on the Ain Shams University server logs. The introduction of semantic information offered further improvement in prediction accuracy by 33% without affecting the prediction time.

Finally, we suggested two approaches to combine the previous two methods. For the first, the average time spent on a page was used to adjust concept counts. This approach improved the accuracy even further by 47.3%. The second approach used an updated distance matrix combined from the two matrices obtained in the first two methods to represent the distances between users. This approach improved the prediction accuracy by 54.3%

The chapters of the thesis are organized as follows:

Chapter 1: Introduction

This chapter offers an introduction to the field as well as the motivation behind the work. The chapter also lists the objectives of the proposed research.

Chapter 2: Background

This chapter gives an overview of the techniques used in developing recommender systems. The chapter explores the two main categories of recommender systems, namely, memory-based and model-based systems. The chapter also presents a comparison between the two techniques for recommender systems. The concepts behind the semantic web as well as its organization are also discussed in this chapter. The chapter explores the importance of semantic information as a dimension added to the information available on the web.

Chapter 3: Related Work

The chapter explores the research done in the fields of recommender systems and semantic web mining. For recommender systems, the chapter presents the different techniques used to overcome the shortcomings of these systems. For semantic web mining, the focus is how semantic information can be integrated into recommendation systems specially web mining algorithms.

Chapter 4: Hybrid Framework for Next Page Prediction

This chapter introduces the hybrid recommender system we are proposing that incorporates memory-based and model-based techniques. Here clustering of user-item matrix was suggested for focusing the search for the user's next page on relevant patterns. The chapter also explains the experiments conducted to test the proposed approach along with the obtained results.

Chapter 5: Semantic Data for Improved Prediction

In this chapter semantic information extracted from the text of web pages was suggested to be added to the proposed framework. Also a decision fusion approach from both usage and semantic data was introduced. The experiments conducted to test the proposed approaches were presented and compared to traditional approaches.

Chapter 6: Conclusions and Future Work

The final conclusions of our work are presented in this chapter. Also, this chapter presents the possible directions for future research.

Table of Contents

Ch	apte	r		Page
Abstract				I
Summary				
Table of Contents				
Lis	st of I	Figures		X
Lis	List of Tables			
Lis	st of A	Abbrevia	ations	XIII
1-	Intr	oductio	on .	1
	1.1	Mo	tivation	1
	1.2		ective	3
	1.3	The	sis Organization	4
2-	Bac	kgroun	d	6
	2.1	Recom	mender Systems	7
		2.1.1	Memory-Based Recommender Systems	8
			A. Collaborative Filtering	9
			B. Content-based Recommender Systems	16
			C. Hybrid Recommender Systems	17
		2.1.2	Model-Based Recommender Systems	20
			A. Data Preparation	22
			B. Behavior Modeling	23
			C. Recommendation	26
		2.1.3	Memory-Based vs. Model-Based Techniques	27
			A. Incorporating New Data	27
			B. Scalability	28
			C. Handling New Users	28
			D. Individuality	29
			E. Prediction Time	29
	2.2	C	F. Robustness	29
	2.2		tic Web Architecture	29
		2.2.1	Universal Resource Identifier	30
		2.2.2	Extensible Markup Language	31

		2.2.3	Resource Description Framework	32
		2.2.4	RDF Schema	32
		2.2.5	Ontology	33
		2.2.6	Logic, Proof and Trust	34
	2.3	Seman	tic Web Mining	35
		2.3.1	Integration Areas	35
		2.3.2	Mining for Ontology Construction and Modification	36
			A. Ontology Construction	36
			B. Ontology Modification	36
		2.3.3	Semantic Annotation	37
		2.3.4	Semantic Data for Improved Recommendations	38
	2.4	Summ	ary	39
3-	Rela	ated We	ork	40
	3.1	Memo	ry-Based Recommender Systems	41
		3.1.1	Collaborative Filtering	41
		3.1.2	Content-Based Systems	42
		3.1.3	Hybrid Recommender Systems	43
	3.2	Next P	Page Prediction	45
		3.2.1	Association Rules	45
		3.2.2	Clustering.	46
		3.2.3	Sequential Patterns	47
		3.2.4	Markov Models.	49
	3.3	Seman	tic Data Integration	50
		3.3.1	Ontology Construction and Modification	50
		3.3.2	Semantic Web Usage Mining	51
		3.3.3	Semantic Data in Recommender Systems	55
		3.3.4	Improving Search Results	57
	3.4	Summ	ary	57
4-	П-,1	mid Err	amawark for Navt Daga Dradiation	59
4-	4.1		amework for Next Page Prediction	60
	4.1		oposed Framework	61
	4.2	4.2.1	ent Patterns Mining	61
		4.2.1	Data Preparation	61

			B. Session and Transaction Identification	62
		4.2.2	Pattern Mining	64
	4.3	The Use	er Page Matrix	64
	4.4	User Cl	ustering and Centroid Pruning	65
	4.5	Frequen	nt Patterns Clustering	66
	4.6	Next Pa	ge Prediction	67
		4.6.1	Conventional Next Page Prediction	67
		4.6.2	Prediction Based on Usage Data	68
	4.7	Results	and Discussion	69
		4.7.1	Datasets	69
		4.7.2	Experiments' Settings	69
		4.7.3	Prediction Speed.	72
			A. Prediction Time	72
			B. Patterns / Query	74
		4.7.4	Prediction Accuracy	75
		4.7.5	Other Prediction Quality Measures	77
	4.8	Summa	ry	82
_	~			0.0
5-			ata for Improved Prediction	83
5-	Sen 5.1	Integrat	ing Semantic Information	84
5-		Integrat 5.1.1	ing Semantic Information	84 84
5-		Integrate 5.1.1 5.1.2	ing Semantic Information	84 84 86
5-		5.1.1 5.1.2 5.1.3	ing Semantic Information Semantic Annotation User Concept Matrix Decision Fusion	84 84 86 86
5-		5.1.1 5.1.2 5.1.3	ing Semantic Information Semantic Annotation User Concept Matrix Decision Fusion A. Combined User-Concept Matrix	84 84 86 86 87
5-	5.1	5.1.1 5.1.2 5.1.3	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix.	84 84 86 86 87 88
5-	5.1	Integrate 5.1.1 5.1.2 5.1.3	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering.	84 84 86 86 87 88 89
5-	5.1 5.2 5.3	Integrate 5.1.1 5.1.2 5.1.3 User and Next Pa	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering.	84 84 86 86 87 88 89 91
5-	5.1	Integrate 5.1.1 5.1.2 5.1.3 User and Next Pa Results	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering. and Discussion.	84 84 86 86 87 88 89 91 93
5-	5.1 5.2 5.3	Integrate 5.1.1 5.1.2 5.1.3 User and Next Pa Results 5.4.1	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering. age Prediction. and Discussion. Prediction Speed.	84 84 86 86 87 88 89 91 93 93
5-	5.1 5.2 5.3	Integrate 5.1.1 5.1.2 5.1.3 User and Next Pa Results 5.4.1	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering. age Prediction. and Discussion. Prediction Speed. A. User Concept Matrix.	84 84 86 86 87 88 89 91 93 93
5-	5.1 5.2 5.3	Integrate 5.1.1 5.1.2 5.1.3 User and Next Pa Results 5.4.1	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering. ge Prediction. and Discussion. Prediction Speed. A. User Concept Matrix. B. Decision Fusion.	84 84 86 86 87 88 89 91 93 93 93
5-	5.1 5.2 5.3	Integrat 5.1.1 5.1.2 5.1.3 User and Next Pa Results 5.4.1	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering. ge Prediction. and Discussion. Prediction Speed. A. User Concept Matrix. B. Decision Fusion. C. Results Summary and Analysis.	84 84 86 87 88 89 91 93 93 94 94
5-	5.1 5.2 5.3	Integrat. 5.1.1 5.1.2 5.1.3 User and Next Parks 15.4.1	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering. age Prediction. and Discussion. Prediction Speed. A. User Concept Matrix. B. Decision Fusion. C. Results Summary and Analysis. Prediction Accuracy.	84 84 86 86 87 88 89 91 93 93 94 94 96
5-	5.1 5.2 5.3 5.4	Integrat. 5.1.1 5.1.2 5.1.3 User and Next Parkesults 5.4.1 5.4.2 5.4.3	ing Semantic Information. Semantic Annotation. User Concept Matrix. Decision Fusion. A. Combined User-Concept Matrix. B. Combined Distance Matrix. d Pattern Clustering. ge Prediction. and Discussion. Prediction Speed. A. User Concept Matrix. B. Decision Fusion. C. Results Summary and Analysis.	84 84 86 87 88 89 91 93 93 94 94

6-	Cor	clusion	s and Future Work	104
	6.1	Propos	ed Hybrid System	105
	6.2 Adding Semantic Information6.3 Recommendations and Future Work		107	
			109	
		6.3.1	System Recommendations	109
		6.3.2	Future Work	109
			ls	110 111

Arabic Summary

List of Figures

Fig. 2.1	Taxonomy of Recommender Systems	8
Fig. 2.2	Switching Hybrid Recommender Systems	18
Fig. 2.3	Cascade Hybrid Recommender Systems	19
Fig. 2.4	Weighted Hybrid Recommender Systems	20
Fig. 2.5	Architecture of Web Usage Mining	21
Fig. 2.6	An Example of Web Server Logs	22
Fig. 2.7	An Example of 1st and 2nd Order Markov Models	26
Fig. 2.8	Evolution of the Web	30
Fig. 2.9	Architecture of Semantic Web	31
Fig. 2.10	Example for using RDF	32
Fig. 2.11	Example for Using an RDF Schema	33
Fig. 2.12	Semantic Annotation Process	38
Fig. 3.1	Using Data Mining to Build Ontologies	51
Fig. 3.2	The Knowledge and Data Co-Evolution Cycle	52
Fig. 3.3	Integrating Semantic Data into Usage Mining	53
Fig. 3.4	Architecture of the ORGAN System	55
Fig. 4.1	Proposed Framework	61
Fig. 4.2	Example of a User Path	63
Fig. 4.3	Algorithm for Generating MFRs	63
Fig. 4.4	Steps for Building User-Page Matrix	65
Fig. 4.5	Prediction Based on Usage Data	68
Fig. 4.6	Silhouette Coefficient Values	70
Fig. 4.7	Prediction Time (ms.) Comparison for User-Page Matrix	73
Fig. 4.8	Patterns / Query Comparison for User-Page Matrix	75
Fig. 4.9	Prediction Accuracy Comparisons for User-Page Matrix	77
Fig. 4.10	Comparisons of Precision Values	79
Fig. 4.11	Comparisons of Coverage Values	80
Fig. 4.12	Comparisons of F1 Measure Values	81
Fig. 5.1	System Architecture using User-Concept Matrix	85
Fig. 5.2	Steps for Semantic Annotation	85
Fig. 5.3	Steps for Building User-Concept Matrix	86
Fig. 5.4	Steps for Building Combined User-Concept Matrix	87
Fig. 5.5	Steps for Building Combined Distance Matrix	89

Fig. 5.6	Centroid Pruning with Concept Data	90
Fig. 5.7	Centroid Pruning with Combined Distance Matrix	91
Fig. 5.8	Prediction Based on Semantic Data	92
Fig. 5.9	Prediction Time (ms.) Summary Results	95
Fig. 5.10	Patterns / Query Summary Results	96
Fig. 5.11	Prediction Accuracy Comparisons	97
Fig. 5.12	Comparisons of Precision Values	99
Fig. 5.13	Comparisons of Coverage Values	100
Fig. 5.14	Comparisons of F1 Measure Values	101

List of Tables

Table 2.1	Comparison of Memory-based and Model-based Systems	28
Table 2.2	Web Mining Applications for the Semantic Web	36
Table 4.1	Datasets Description	69
Table 4.2	Prediction Time (ms.) Comparison for User-Page Matrix	72
Table 4.3	Patterns / Query Comparison for User-Page Matrix	74
Table 4.4	Prediction Accuracy Comparison for User-Page Matrix	76
Table 4.5	Comparison of Prediction Quality Measures	78
Table 5.1	Prediction Speed Comparison for User-Concept Matrix	93
Table 5.2	Prediction Speed Comparison for Decision Fusion	94
Table 5.3	Prediction Speed Summary results	95
Table 5.4	Prediction Accuracy in User-Concept Matrix & Decision Fusion	96
Table 5.5	Comparison of Precision Values	97
Table 5.6	Comparison of Coverage Values	98
Table 5.7	Comparison of F1 Measure Values	99
Table 5.8	Summary Values for Prediction Quality Measures	100
Table 6.1	Results for experiment (1)	106
Table 6.2	Results for experiment (2)	108

List of Abbreviations

DFS Depth First Search

GSP Generalized Sequential Patterns
LCS Longest Common Subsequence

MAE Mean Absolute Error

MFR Maximal Forward Reference
OWL Web Ontology Language
PNN Pair-wise Nearest Neighbor

RDF Resource Description Framework

RMSE Root Mean Square Error

SVD Singular Value Decomposition
URI Universal Resource Identifier
URL Uniform Resource Locator

VLMC Variable Length Markov Chains
XML Extensible Markup Language