IMPROVEMENT OF CYANOBACTERIA BIOMASS FOR BIODIESEL PRODUCTION VIA MOLECULAR GENETIC TOOLS

By

SHERIF SAMIR HELMY EL ASHMAWY

B.Sc. Agric. Sc. (Genetics), Ain Shams Univ. (2008)

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

MASTER OF SCIENCE

in

Agricultural Sciences

(Genetics)

Department of Genetics

Faculty of Agriculture

Ain Shams University

Approval sheet

IMPROVEMENT OF CYANOBACTERIA BIOMASS FOR BIODIESEL PRODUCTION VIA MOLECULAR GENETIC TOOLS

$\mathbf{B}\mathbf{y}$

Sherif Samir Helmy El Ashmawy

B. Sc. Agric. Sc. (Genetics), Ain Shams University. 2008

This thesis for M. Sc. degree has been approved by:
Dr. Omar Fathey Dakhly
Prof. of Genetics, Faculty of Agriculture, Minia University.
Dr. Ali Zein El Abidin Abd El salam
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams
University.
Dr. Khaled Abdel-Aziz Abd El Aty Soliman
Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Dr. Samir Abd El-Aziz Ibrahim
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams
University.
Date of Examination : / 2016.

IMPROVEMENT OF CYANOBACTERIA BIOMASS FOR BIODIESEL PRODUCTION VIA MOLECULAR GENETIC TOOLS

 $\mathbf{B}\mathbf{y}$

Sherif Samir Helmy El Ashmawy

B. Sc. Agric. Sc. (Genetics), Ain Shams University. 2008

Under the supervision of:

Dr. Samir Abd el-Aziz Ibrahim

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University. (Principal Supervsior)

Dr. Khaled Abdel-Aziz Abd El Aty Soliman

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Ashraf Bakry Abd El Razik

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Spirulina is a prokaryotic algae and one of the most economically important microalgae, especially to produce biodiesel contained polyunsaturated fatty acids with carbon chain length and degree of unsaturation greater than those found in plants and tallow biodiesel, which can be converted into biofuel content. After collecting samples from three different places, we studied the effect of different concentrations for some nutrition elements (nitrogen and carbon) on the productivity of dry biomass and lipids content of Spirulina. Nine mutants were obtained using the mutagen EMS and the results showed a compromise between the nine mutants for the dry weight of the output of the biomass and lipids content. The concentration of EMS 0.1% / 30 min was given the highest contents in biomass weight of 0.6003 g, 0.5512 g before and after extraction, respectively, and by a wide margin in lipid content (8%). Biochemical and molecular genetics methods showed an ability to distinguish between the nine mutants and it showed important use in the genetic improvement of microalgae for the possibility obtained on a strain or a genetic combination distinct higher productivity biomass and lipids content, and that will help speed up the use of microalgae in biodiesel production.

ACKNOWLEDGMENT

First and foremost, my sincerest thanks and gratitude go to Allah, the most beneficent and merciful, for giving me strength and perseverance to finish this work.

I wish to express my sincere thanks and deepest gratitude to **Dr.** Samir Abdel Aziz Ibrahim, Prof. Emeritus of genetics, Fac. of Agric, Ain shams univ.; **Dr. Khaled Abdel Aziz Soliman**, Prof. of Genetics, Fac. of Agric, Ain Shams univ. and **Dr. Ashraf Bakry Abdel Razik**, Prof. of Genetics, Fac. of Agric, Ain Shams univ. for their kind and effective supervising and continuous encouragement during the progress of this study.

Deep thanks to **Dr. Mahmoud Saker,** Prof. and head of Academy of Scientific Research and Technology, for his sincere helping and encouragement during the progress of this study.

Many thanks to the Academy of Scientific Research and Technology for my candidacy on scholarship in the field of bioenergy production *via* molecular genetics, and provide the grant with financial resources, to complete the training on basic skills; skills of scientific research and kindly training in specific field, and to study of master's degree, with project of Scientists for Next Generation.

Finally, many thanks and appreciation are to all the staff members; and all the postgraduate students of Ain Shams Center for Genetic Engineering and Biotechnology branch of faculty of Agriculture (ACGEB), especially **Hamies Baher** for helping me to accomplish this work.

Contents

LIST OF TABLES
LIST OF FIGURES
INTRODUCTION
REVIEW OF LITERATURE
Algae
Effect of Environmental factors on dry biomass and
lipids content
The effect of Nitrogen on dry biomass and lipids
content
The Effect of Carbon on dry biomass and lipids
content
Interaction among environmental factors
Genetic improvement in microorganisms
Mutagenesis of microalgae
Biochemical genetic markers
1- SDS-PAGE analysis
2- Calcium-binding protein
3- Isozyme markers
DNA molecular-markers based on polymerase chain
reaction (PCR)
1- Random amplified polymorphic DNA markers
(RAPD-analysis)
2- DNA molecular marker based on Inter
Samples Sequence Repeats (ISSR-PCR)
MATERIALS AND METHODS
Materials
Cyanobacteria (blue green algae, microalgae) strain
Culture conditions of Spirulina propagation
Media
Propagation medium
Sp medium
Zarrouk modium

Methods	35
Growing, harvesting and lipid extraction	35
Comparison between Sp and Zarrouk media	
propagation	37
Effect of nitrogen concentration on oil content	37
Effect of on carbon concentration on oil content	37
Effect of changing carbon concentrations with high	
concentration of nitrogen	38
Mutagenic treatment	38
Extraction of lipids	39
Biochemical genetic studies	40
Reagent for biochemical characterization	40
I-Cyanobacterial, Spirulina protein	40
	40
1-SDS-PAGE	40
2-Calcium binding protein	43
II- Isozyme electrophoresis	43
Peroxidase	45
DNA molecular genetic markers based on RAPD and	
ISSR-PCR	45
DNA isolation procedure	45
1- Randomly amplified polymorphic DNA	
(RAPD)	48
2- PCR conditions for inter simple sequence	••
repeat (ISSR)	48
Data analysis	49
RESULTS AND DISCUSSION	50
Evaluation of two media, for growth of spirulina on	
the percentage of oil obtained from each	50
Effect of nitrogen on dry biomass and lipids content	51
Effect of changing carbon concentration on biomass	
and lipids content	53
Effect of changing carbon concentration, with high	
concentration of nitrogen on biomass and lipids	
content	56
Effect of mutagenesis on dry biomass and oil content.	58
Protein electrophoresis analysis	61
1- SDS-PAGE	61

2- Calcium binding protein	••
Protein polymorphism	•
Peroxidase isozyme analysis	
Specific markers for Spirulina genotypes by	
biochemical genetic studies	
Molecular studies between wild type and nine	
mutants based on RAPD and ISSR-PCR markers	
1- RAPD-PCR analysis	•
RAPD-PCR polymorphism	
Spirulina wild type and their mutants specific RAPD	
markers	
2- ISSR-PCR amplification analysis	
ISSR-PCR polymorphism	••
Spirulina wild type and their nine mutants specific	
ISSR markers	
SUMMARY	••
REFERENCE	
ARABIC AUMMARY	

LIST OF TABLES

No.		Page
1	Products from microalgae	6
2	Comparison of some sources of biodiesel	10
3	Lipid accumulation profilies of selected oils plants and oligenous microorganisms	11
4	Summary of the effect carbon and nitrogen concentrations on biochemical composition of microalgae	19
5	Solution (A)	33
6	Solution (B)	33
7	Composition of Micronutrients solution in 1L dw	34
8	Composition of Vitamin solution in 1L dw	34
9	Composition of Zarrouk medium in 1L dw	34
10	Trace elements solution	35
11	Normal and three different concentrations of NaNO ₃ , which used in modified Sp. medium	37
12	Normal and three concentrations of (NaHCO ₃ & Na ₂ CO ₃), which used in modified sp. Medium	38
13	Concentrations of EMS and exposure times, used in Spirulina mutagenesis	39
14	Composition of separating and stacking gels	41
15	List of primers, codes and their nucleotide sequences used in the study for RAPD and ISSR procedure	48

16	Evaluation of biomass production of <i>Spirulina</i> on the two different media Zarrouk and Sp. Medium	50	
17	Evaluation of biomass production of <i>Spirulina</i> on three different NaNO ₃ concentrations	52	
18	Evaluation of biomass production of <i>Spirulina</i> on the three different levels of (NaHCO ₃ + Na ₂ CO ₃) as source of carbon	54	
19	Biomass production of <i>Spirulina</i> on three different levels of (NaHCO ₃ + Na ₂ CO ₃) as source of C and high level of NaNo ₃ as source of N	56	
20	Spirulina growth of mutants obtained by treatment with different concentrations of EMS (0.1, 0.01 and 0.001%) for period 30, 60 and 120 min. per each, respectively	59	
21	Protein banding patterns of the studied <i>Spirulina</i> sp wild type and their nine mutants as revealed by SDS-PAGE for total protein	63	
22	Number of calcium binding protein produced bands	65	
23	Protein polymorphism percentages and no. of polymorphic, monomorphic and unique bands generated by two protein systems in the ten <i>Spirulina</i> samples	65	
24	Number of bands that were produced by isozyme system peroxidase in <i>Spirulina</i> wild type and their nine mutants	67	
25	Specific markers and their MW for <i>Spirulina</i> wild type and their nine mutants genotypes produced by biochemical studies	68	
26	Amplified DNA fragments and their molecular size (bp) produced by primer PO-A01 in wild type and nine mutants of <i>Spirulina</i>	70	

27	Amplified DNA fragments and their molecular size (bp) produced by primer OP-A10 in wild type and nine mutants of <i>Spirulina</i>	72
28	Amplified DNA fragments and their molecular size (bp) produced by primer OP-B02 in wild type and nine mutants of <i>Spirulina</i>	73
29	PCR fragments generated by RAPD primer OP-C09 in wild type and nine mutants of <i>Spirulina</i>	75
30	Amplified DNA fragments and their molecular size (bp) produced by primer OP-C19 in wild type and nine mutants of <i>Spirulina</i>	76
31	Total number of DNA fragments, no. of monomorphic, polymorphic, unique bands and polymorphism percentage, generated by tested 5 RAPD primers in <i>Spirulina</i> wild type and their nine mutants	77
32	Spirulina wild type and their nine mutants positive and negative markers obtained from RAPD-PCR and their molecular sizes	79
33	PCR fragments generated by ISSR primer HB-08 in <i>Spirulina</i> wild type and their nine mutants. (+ means presence and – means absent)	80
34	PCR fragments generated by ISSR primer HP09 in <i>Spirulina</i> wild type and their nine mutants (+ means presence of bands and – means absence of bands)	82
35	PCR fragments generated by ISSR primer HB12 in <i>Spirulina</i> wild type and their nine mutants (+ means presence of bands and – means absence of bands)	83
36	PCR fragments generated by ISSR primer HB-15 in <i>Spirulina</i> wild type and their nine mutants (+ means presence of bands and – means absence of bands)	85

VII

37	PCR fragments generated by ISSR primer HB-13 in <i>Spirulina</i> wild type and their nine mutants (+ means presence of bands and – means absence of bands)	87
38	Total number of DNA fragments, No. of monomorphic, unique, polymorphic bands and polymorphism percentage; generated by tested 5 ISSR primers in <i>Spirulina</i> wild type and their nine	
	mutants	88
39	Positive and negative markers obtained from ISSR-PCR and their molecular sizes	90

VIII

LIST OF FIGURES

No.		Page
1	Generalized chemical contents of microalgae	7
2	Life time of an algal growth. FAO, 2008	9
3	Procedures to obtain dry mass and Spirulina oil	36
4	Soxhlet extractor	36
5	Evaluation of biomass production of <i>Spirulina</i> on the two different media, Zarrouk and Sp	51
6	Dry weight (DW) of <i>Spirulina</i> for different NaNO ₃ levels as source of nitrogen	52
7	Lipids content as percentage of dry weight of spirulina for different NaNO ₃ levels as source of nitrogen	53
8	Dry weight of <i>Spirulina</i> obtained from growth on different levels of (NaHCO ₃ + Na ₂ CO ₃)	54
9	Lipids content as percentage of dry weight of spirulina obtained from growth on different levels of (NaHCO ₃ + Na ₂ CO ₃)	55
10	Dry weight of <i>Spirulina</i> for three different concentrations from (NaHCO ₃ + Na ₂ CO ₃) as source of carbon and high level of NaNo ₃ as source of nitrogen.	57
11	Lipids content as percentage of dry weight of spirulina obtained from growth on three different concentrations from (NaHCO ₃ + Na ₂ CO ₃) + high level of NaNO ₃	58

12	treatment with different concentrations of EMS (0.1, 0.01 and 0.001) for different periods (30, 60 and 120 min)	60
13	Lipid content as percentage of dry weight of <i>Spirulina</i> mutants obtained by treatment with different concentrations of EMS (0.1, 0.01, 0.001) for different periods (30, 60 and 120 min)	60
14	SDS-PAGE profiles of algal total protein among <i>Spirulina</i> wild type and their nine mutants	62
15	Electrophoretic bands pattern of calcium binding protein of <i>Spirulina</i> wild type and their nine mutants	64
16	Electrophoretic bands pattern of peroxidase isozymes of <i>Spirulina</i> wild type and their nine mutants	66
17	RAPD electrophoretic patterns of <i>Spirulina</i> wild type and nine mutants generated using OP-A01 primer	70
18	RAPD electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated using OP-A10 primer.	71
19	RAPD electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated by using OP-B02 primer.	73
20	RAPD electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated using OP-C09 primer.	74
21	DNA profile generated using OP-C19 primer among <i>Spirulina</i> wild type and their nine mutant samples	76
22	ISSR electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated using HB-08	80
23	ISSR electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated using HB-09	81

24	ISSR electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated using HB-12	82
25	ISSR electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated using HB-15	85
26	ISSR electrophoretic patterns of <i>Spirulina</i> wild type and their nine mutants generated using HB-13	86