Ain Shams University
Faculty of Medicine
Department of Anesthesiology,
Intensive Care and Pain Management

Peri Operative Management Of Morbid Obese Patients Undergoing Non-Bariatric Major Surgery

An Essay Submitted in Partial Fulfillment of the Master's Degree in Anesthesia

 $\mathbf{B}\mathbf{y}$

Ahmed Nasr Shazly Hafez (MB, BCh)

Under Supervision of

Prof. Dr. Azza Yousef Ibrahim

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Adel Mikhael Fahmy

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Wael Sayed Abd Elghaffar

Lecturer in Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University Ain Shams University Faculty of Medicine 2016

First of all, I thank Allah for blessing this work until it has reached its end, as a part of his generous helping throughout my life.

I would like to express my deep gratitude and appreciation to **Prof. Dr. Azza Yousef Ibrahim Ahmed,** Professor of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Ain Shams University for her continuous support and supervision.

I would also like to express my gratitude to **Prof. Dr. Adel Mikhael Fahmy,** Professor of Anesthesiology and Intensive Care
Medicine, Faculty of Medicine, Ain Shams University for his
continuous support and supervision.

I would also like to express my gratitude to **Dr. Wael**Sayed Abd Elghaffar, Lecturer of Anesthesiology and Intensive
Care Medicine, Faculty of Medicine, Ain Shams University, for his
continuous support and supervision.

Finally, I dedicate this effort to My family, who helped me in every moment of my life. Also I dedicate this work to my wife and my son, Moaaz.

Ahmed Nasr Shazly Hafez

Aim of the work

The aim of the work is to discuss the pathophysiology of morbid obesity and to review the anesthetic implications of major operations.

List of Abbreviations

ADH Antidiuretic hormone

AHA American heart association

a–a Alveolar–arterial

AE adverse events

AF Atrial fiberllation

AHI Apnea hypopnea index

APAP Autoadjusting positive airway pressure

ASA American society of anesthesiologists

BEE Basal energy expenditure

BiPAP Bilevel positive airway pressure

BIS Bispectral index

BMI Body mass index

CC Closing capacity

CF Cardiac failure

CHD Congestive heart disease

CI Cardiac index

CO₂ Carbon dioxide

CBW Corrected body weight

CPAP Continuous positive airway pressure

CPEX Cardiopulmonary exercise testing

CSCF Clinical Services Capability Framework

DM Diabetes mellitus

DMV Difficult mask ventilation

DVT Deep venus thrombosis

DXA Dual-energy radiographic absorptiometry

ECG Electrocardiography

EI Energy intake

EIT Electrical impedance tomography

ERV expiratory reserve volume

EtCO₂ End-tidal CO₂

FVC Functional volume capacity

FRC Functional residual capacity

GERD Gastro-esophageal reflux disease

GLP-1 Glucagon like peptide-1

HELP Head elevated laryngoscopy position

IAP Intra-abdominal pressure

IBW Ideal body weight

ICU Intensive care unit

IDDM Insulin dependent diabetes mellitus

IHD Ischemic heart disease

IPC Intermittent pneumatic compression devices

IVC Inferior vena cava

JVP Jugular venous pressure

LAD Left atrial dillatation

LBW Lean body weight

LV Left ventricle

LAGB Laparoscopic adjustable gastric banding

MAC Minimal alveolar concentration

MAP Mean arterial blood pressure

NASH Non-alcoholic steatohepatitis

NC Neck circumference

NIPPV Non-invasive positive pressure ventilation

NMBA Neuro muscular blocking agents

 N_2O Nitrous oxide

NPO Nothing by mouth

NSAID Nonsteroidal anti-inflammatory drug

OHS Obesity hypoventilation syndrome

OSA Obstructive sleep apnea

PAP Positive airway pressure

PACU Postoperative anesthesia care unit

P_aCO₂ Arterial carbon dioxide tension

PE Pulmonary embolism

PFTs Pulmonary function tests

PONV Postoperative nausea and vomiting

P-SAP Perioperative sleep apnea prediction score

PSG Polysomnography

REM Rapid eye movement

RSI Rapid sequence induction

RV Residual volume

 S_aO_2 Arterial oxygen saturation

SVR Systemic vascular resistance

TAP Transversus abdominal plane

TBW Total body weight

TEE Transesophageal echocardiography

TIVA Total intravenous anesthesia

TLC Total lung capacity

TMD Thyromental distance

TSH Throid stimulating hormone

VC Vital capacity

VO₂ Maximum oxygen uptake

 $\dot{\mathbf{V}}/\dot{\mathbf{Q}}$ Ventilation/perfusion ratio

VD Volume of distribution

WHO World health organization

List of Tables

Table 1	classification of body weight according to WHO 4	
Table 2	Obesity associated comorbidities	
Table 3	STOP-Bang Questionnaire	
Table 4	Odds Ratio of Different STOP-Bang Scores 40	
Table 5	Summery of Recommended Ventilation Strategies62	
Table 6	Summary of Drug Doses Used In Anesthesia68-73	

List of Figures

Fig 1 Factors involved in the development of obesity 12			
Fig 2 A variety of accessories are available to aid in supporting and positioning the patient			
Fig 3 Using a lifter to transport a patient facilitates patient safety and safeguards medical team members			
Fig 4 Perioperative Management of Sleep Apnea99			

Contents

	Page
List of Abbreviations	I
List of Tables	V
List of Figures	VI
Introduction	1
aim of the work	
Review of literature	
Chapter (1): pathophysiology of obesity	3
Chapter (2): Pre-operative assessment and preparation	25
Chapter (3): Intra-Operative Management	
Chapter (4): Post-operative care and pain management	
Summary	
References	103
Arabic Summary	

Introduction

Definition

As defined by the WHO, overweight and obesity are characterized by an abnormal or excessive fat accumulation that presents a risk to health (*Huschak et al.*, 2013).

In the United States of America, Obesity is a major public health disaster and in the rest of the developed world. In many developed nations worldwide, the incidence is rising rapidly. This increasing rate represents a pandemic that needs urgent attention if obesity's possible toll on morbidity, mortality, and financial side is to be avoided. Research into the complex physiology of obesity may assist in avoiding this impact.

The annual cost of managing obesity in the United States of America amounts to approximately one billion and ninety dollars per year, or twenty percent of national health expenditures, according to a recent study. (*Cawley et al.*, 2012)

The major aim for the anesthetist is to provide safe perioperative care without at all morbidity or mortality for the procedure in morbidly obese patients. To achieve this all the team members should be aware of the morphological, physiological and other systemic pathological changes in obese patients. (*Trus et al.*, 2005).

Aim of the work

The aim of the work is to discuss the pathophysiology of morbid obesity and to review the anesthetic implications of major operations.

Pathophysiology of obesity

Classification of obesity

Obesity is a condition of excess of body fat and overweight is an excess of body weight for height. Normal, healthy women have a percentage of approximately 25-30% and healthy men have a body fat percentage of 15-20%. (*Gallagher et al., 2000*).

The body mass index (BMI), which is identified as the Quetelet index, calculated as weight/height², with weight being in kilograms and height being in meters (otherwise, the equation is weight in pounds 0.703/height in inches²):

a) WHO international classification of adult underweight, overweight and obesity according to BMI is as follows:

Classification	BMI(kg/m2)		
	Principal cut-off	Additional cut-off	
	points	points	
Underweight	<18.50	<18.50	
Severe thinness	<16.00	<16.00	
Moderate thinness	16.00 - 16.99	16.00 - 16.99	
Mild thinness	17.00 - 18.49	17.00 - 18.49	
Normal range	18.50 - 24.99	18.50 - 22.99	
		23.00 - 24.99	
Overweight	≥25.00	≥25.00	
Pre-obese	25.00 - 29.99	25.00 - 27.49	
		27.50 - 29.99	
Obese	≥30.00	≥30.00	
Obese class I	30.00 - 34.99	30.00 - 32.49	
		32.50 - 34.99	
Obese class II	35.00 - 39.99	35.00 - 37.49	
		37.50 - 39.99	
Obese class III	≥40.00	≥40.00	

Table 1:Cut-offs for BMI-classes represents traditional values in the American and European population.(*Shiwaku et al 2004*).

b) Physical Status Classification

Obese patients are classified by The American Society of Anesthesiologists (ASA) as ASA II and those with organ dysfunction (eg. hypertention) are classified as ASA III

It should be noted that the ASA principal cut off points for BMI classification are slightly different to the WHO international classification as follows: