

FACULTY OF ENGINEERING

Computer and Systems Engineering

Test Cases Optimization Using Search Based Approach

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Computer and Systems Engineering)

by

Ghada El-Sayed Abo Deif Ahmed

Bachelor of Science in Electrical Engineering

(Computer and Systems Engineering)

Faculty of Engineering, Ain Shams University, 2011

Supervised By

Prof. Ayman Wahba

Dr. Cherif Salama

Cairo - (2015)

Name: Ghada El-Sayed Abo-Deif Ahmed
Thesis: Test Cases Optimization Using Search Based Approach
Degree: Master of Science in Electrical Engineering
(Computer and Systems Engineering)

Examiners Committee

1.	Prof. Mohamed Gamal Eldien Darwish	
	Professor at Information Technology Dept.	
	Faculty of Computers and Information Sciences	
	Cairo University.	•••••
2.	Prof. Gamal Eldin Mohamed Aly Sayed	
	Professor at Computer and Systems Engineering Dept.	
	Faculty of Engineering	
	Ain-Shams University.	•••••
3.	Prof. Ayman Mohamed Mohamed Wahba	
	Professor at Computer and Systems Engineering Dept.	
	Faculty of Engineering	
	Ain-Shams University.	

Date: 31 / 10 / 2015

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name
Ghada El-Sayed Abo Deif Ahmed
Signature

Date: 31 October 2015

Researcher Data

Name : Ghada El-Sayed Abo Deif Ahmed

Date of birth : 11 September 1989

Place of birth : Cairo

Last academic degree : Bachelor of Science in Electrical Engineering

Field of specialization : Computer and Systems Engineering

University issued the degree : Ain Shams University

Date of issued degree : July 2011

Current job : Unemployed

AIN-SHAMS UNIVERSITY

Abstract

Faculty of Engineering
Computer and Systems Engineering

Master of Science

Test Cases Optimization Using Search Based Approach

by Ghada EL-SAYED

Structural coverage criteria are employed in testing according to the criticality of the application domain. Modified Condition/Decision Coverage (MC/DC) comes highly recommended by multiple standards, including, ISO 26262 and DO-178C in the automotive and avionics industries respectively. Yet, it is time and effort consuming to construct and maintain test suites that achieve high coverage percentages of MC/DC. Search based approaches were used to automate this task due to the problem complexity. My results show that the generated test data could be minimized while maintaining the same coverage by considering that a certain test datum can satisfy multiple MC/DC test targets. This improves the maintainability of the generated test suite and saves the resources required to define their expected outputs and any part of the testing process that is repeated per test case.

Summary

Many standards recommend Modified Condition/Decision Coverage (MC/DC) to be used as a structural coverage criterion in safety critical applications. So, my approach targets generating test data automatically to satisfy this coverage criterion. Then, I aim at optimizing the size of this generated test data while preserving the same coverage. Minimizing the size of test data saves the tester's effort and time in maintenance, documentation, defining the expecting outputs and most work that is done per test data. Also, in this approach I enhance some of the configurations mostly used in generating the test data automatically and show their effectiveness by experimental results.

Chapter 1 gives an introduction to the thesis and the domain requirements that are targeted. Also, lists a summary of the main contributions.

Chapter 2 discusses the need for using structural coverage criteria in testing and explains their types in details.

Chapter 3 introduces the approach of automating test data generation using different methodologies, illustrating the one used here; which is meta-heuristic search techniques (Genetic Algorithms).

Chapter 4 represents a survey of the previous related work by other researchers in this field and what was reused from this survey. Also, defines the problem and my proposed approach to solve it.

Chapter 5 gives the detailed implementation of the solution and the enhancements applied on some configurations. Also, gives the experimental results obtained from this work that illustrate its effectiveness.

Finally, Chapter 6 gives the work conclusion and the future work.

Keywords: DO-178C, Search based testing, Maintainability, MC/DC, Optimization, Structural coverage

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors Prof. Ayman Wahba and Dr. Cherif Salama for the continuous support of my M.Sc. study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having better advisors and mentors for my M.Sc. study.

Beside my advisors, I would like to thank the rest of my examination committee: Prof. Mohamed Gamal Eldien Darwish and Prof. Gamal Eldin Aly for their insightful comments and encouragement, but also for the hard questions which incented me to widen my research from various perspectives.

Last but not the least, I would like to thank my family: my parents, my husband and my sister for supporting me spiritually throughout writing this thesis and my my life in general.

Contents

A	bstra	t	i
Sı	ımm	у	ii
A	ckno	ledgements	iii
C	ontei	${f s}$	iv
Li	st of	Figures	vii
Li	st of	Tables	/iii
A	bbre	ations	ix
1	Inti	duction	1
	1.1	Overview	1
		1.1.1 Software testing	2
		1.1.2 Unit testing	2
		1.1.3 Black box and white box testing	3
		1.1.4 Coverage based testing	3
	1.2	Motivation	4
	1.3	Objectives	5
	1.4	Organization	6
2	Str	etural Coverage Criteria	7
	2.1	Modified Condition/Decision Coverage	10
	2.2	How to generate MC/DC test cases systematically?	10
		2.2.1 Example 1: A && B	11
		2.2.2 Example 2: A B	12
		2.2.3 Example 3: A (B & & C)	19