Light Emitting Diode in Skin Rejuvenation

Thesis

Submitted for partial fulfillment of Master Degree in Dermatology, Venereology And Andrology

Presented by

Moataz Mohsen Nosseir (M.B., B CH) Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Adel Ahmed Halim Imam

Professor and Head of Dermatology, Venereology and Andrology Department-Ain Shams University

Dr. Mary Fikry Matta

Lecturer of Dermatology, Venereology and Andrology Ain Shams University

Dr. Abeer Attia Tawfik

Assistant professor of Dermatology National Institute of Laser Enhanced Sciences Cairo University

> Faculty of Medicine Ain Shams University 2014

Acknowledgement

Thanks to **Allah** first and foremost. I feel always indebted to God, the most kind and the most merciful, to whom I relate every success in my life.

No words can express my gratitude to **Prof. Adel Ahmed Halim Imam**, Professor and Head of Dermatology, Venereology and Andrology Department, Ain Shams University for his moral and scientific support throughout this study and for giving me the honor of working under his supervision and valuable guidance.

I am greatly indebted to *Dr. Abeer Attia Tawfik*, Assistant Professor of Dermatology, National Institute of Laser Enhanced Sciences, Cairo University for her scientific guidance, helpful cooperation and sincere scientific and moral support throughout the entire work.

Special thanks and deepest gratitude to *Dr. Mary Fikry Matta*, Lecturer of Dermatology, Venereology and Andrology, Ain Shams University for her constructive and instructive comments and valuable suggestion. Her sincere guidance is highly appreciated.

At last but not least, I would like to express special thanks to patients enrolled in this study.

Moataz Nosseir

الديود الضوئي المشع في إصباء البشرة

نزك ب توطئة للحصول على درجة الماجستير فى الأمراض الجلدية والتناسيلة والذكورة

> قخاب الم معتز محسن نصير بكالوريوس الطب والجراحة كلية الطب- جامعة عين شمس

ةح قۇسۇ . أ.د/ عادل أحمد حليم إمام

أستاذ ورئيس قسم الأمراض الجلدية والتتاسلية والذكورة كلية الطب- جامعة عين شمس

د/ ماری فکری متی

مدرس الأمراض الجلدية والتناسلية والذكورة كلية الطب – جامعة عين شمس

د/ عبير عطية توفيق

أستاذ الأمراض الجلدية المساعد المعهد القومي لعلوم الليزر جامعة القاهرة

كلية الطب – جامعة عين شمس 2014

List of Contents

	Page
List of abbreviations	i
List of tables	iii
List of figures	vi
Introduction and aim of work	1
Review of Literature	3
Chap. 1 : Skin aging	3
Chap.2: Management of aged skin	21
Chap.3: Light emitting diode	41
Patients and Methods	72
Results	79
Discussion	111
Summary	123
Recommendations	127
References	128
Arabic Summary	

List of Abbreviations

AP1 Activator protein 1

ADP Adenosine diphosphate

ALA-PDT Amino levulinic acid- photodynamic therapy

ATP Adenosine triphosphate

BTX Botulinum toxin
CO Carbon monoxide
CO2 Carbon dioxide

CW Continuous wave

DEJ Dermoepidermal junction

DNA Deoxynucleic acid
ECM Extracellular matrix

ELOS Electro optical synergy

Er: YAG Erbium: Yttrium – aluminum – garnet

FDA Food and Drug Administration

GAG Glycosaminolycans
GH Growth hormone

Hb Hemoglobin

IGF1 Insulin like growth factor 1

IL Interleukin

IPL Intense pulsed lightIU International units

IR Infrared

J/cm2 Joules/square centimeter

KCM Keratinocyte conditioned medium

LE Lupus erythematosus
LED Light emitting diode
LLLT Low level laser therapy

mALA Methyl ester amino levulinic acid

MMP Matrix metalloproteinases

Mt DNA Mitochondrial deoxynucleic acid

NADH Nicotinamide Adenine Dinucleotide Dehydrogenase NASA National Aeronautics and Space Administration

NB Narrow band

Nd: YAG Neodynium : Ytrium-aluminum – garnet

NILES National Institute of Laser Enhanced Sciences

NIR Near infrared
NM Nanometer
NO Nitric oxide

PCR Polymerase chain reaction

PDL Pulsed dye laser

PDT Photodynamic therapy

PGE Prostaglandins E

PIH Post inflammatory hyperpigmentation

PpIX Protoporphyrin IX
PRP Platelet rich plasma
RF Radiofrequency

ROS Reactive oxygen species
SPF Sun protection factor

TGF-β Transforming growth factor Beta

UV Ultraviolet

List of Tables

		Page
Table (1)	Glogau's Classification system of facial wrinkling	7
Table (2)	Fitzpatrick's classification of skin phototypes	8
Table (3)	Non ablative lasers and light source rejuvenation	25
Table (4)	Examples of LED sources used for non invasive skin rejuvenation	57
Table (5)	Description of patients personal characteristics	79
Table (6)	Wrinkle improvement after treatment	81
Table (7)	Skin texture after treatment	86
Table (8)	Skin pigmentation after treatment	87
Table (9)	Patients satisfaction after treatment	87
Table (10)	Description of improvement in wrinkle, skin texture, skin pigmentation and patient's satisfaction at end of treatment	91
Table (11)	Side effects during and after treatment	92
Table (12)	Description of improvement in wrinkle, skin texture, skin pigmentation and patient's satisfaction at follow up	93

Table (13)	Wrinkle improvement after treatment according to Glogau classification	96
Table (14)	Skin texture after treatment according to Glogau classification	97
Table (15)	Skin pigmentation after treatment according to Glogau classification	97
Table (16)	Degree of patients satisfaction after treatment according to Glogau classification	98
Table (17)	Comparison between cases according to Glogau classification as regard improvement in wrinkle, skin texture, skin pigmentation and patients satisfaction at end of treatment	99
Table (18)	Comparison between cases according to Glogau classification as regard improvement in wrinkle, skin texture, skin pigmentation and patients satisfaction at follow up	100
Table (19)	Wrinkle improvement after treatment according to Fitzpatrick skin typing	101
Table (20)	Skin texture after treatment according to Fitzpatrick skin typing	102
Table (21)	Skin pigmentation after treatment according to Fitzpatrick skin typing	102
Table (22)	Patient's satisfaction after treatment according to Fitzpatrick skin typing	103
Table (23)	Comparison between cases according to Fitzpatrick skin typing as regard improvement in wrinkle, skin texture, skin	104

	pigmentation and patients satisfaction at end	
	of treatment	
Table (24)	Comparison between cases according to	105
	Fitzpatrick skin typing as regard	
	improvement in wrinkle, skin texture, skin	
	pigmentation and patients satisfaction at	
	follow up	
Table (25)	Comparison between cases according to	106
	Age groups as regard improvement in	
	wrinkle, skin texture, skin pigmentation and	
	patients satisfaction at end of treatment	
Table (26)	Comparison between cases according to	107
	Age groups as regard improvement in	
	wrinkle, skin texture, skin pigmentation and	
	patients satisfaction at follow up	
Table (27)	Comparison between wrinkle reduction,	108
	skin texture, skin pigmentation and patient's	
	satisfaction after treatment and at follow up	
	among periorbital treated area.	
Table (28)	Comparison between wrinkle reduction,	109
	skin texture, skin pigmentation and patient's	
	satisfaction after treatment and at follow up	
	among perioral treated area.	
Table (29)	Comparison between wrinkle reduction,	110
	skin texture, skin pigmentation and patient's	
	satisfaction after treatment and at follow up	
	among cheek treated area.	

List of Figures

		Page
Fig. (1)	Effects of UV irradiation on epidermal	15
Fig. (1)	Effects of UV irradiation on epidermal keratinocytes and dermal fibroblasts	13
	·	
Fig. (2)	Regulation of Procollagen production	16
Fig. (3)	Effects of sun exposure on skin	17
Fig. (4)	Absorption spectrum of commonly used non -	26
	ablative laser wavelengths	
Fig. (5)	: LED technology	47
Fig. (6)	Optical Penetration depth	51
Fig. (7)	(A) Before CO2 laser resurfacing, (B) 1 week	60
	and (C) 3 weeks post procedure after 4 LED	
	treatments	
Fig. (8)	Revitalight LED	75
Fig. (9)	Antera 3D TM camera	76
Fig. (10)	Fitzpatrick skin photo type of studied patients	80
Fig. (11)	Glogau classification of studied patients	80
Fig. (12)	Good improvement in overall size of wrinkles.	82
	A), B) before therapy. C),D) after therapy. E)	
	graph presenting the degree of improvement	
Fig. (13)	Moderate improvement in overall size of wrinkles. A), B) before therapy. C),D) after therapy. E) graph presenting the degree of improvement	83
Fig. (14)	Moderate improvement in overall size of wrinkles. A), B) before therapy. C),D) after	84

	therapy. E) graph presenting the degree of	
	improvement	
Fig. (15)	Mild improvement in overall size of wrinkles. A), B) before therapy. C),D) after therapy. E) graph presenting the degree of improvement	85
Fig. (16)	Mild improvement in skin texture A), before therapy. B), after therapy. C) graph presenting the degree of improvement	86
Fig. (17)	Mild improvement in skin pigmentation A,B), before therapy. C,D), after therapy. E) graph presenting the degree of improvement	88
Fig. (18)	Moderate improvement in skin pigmentation A,B), before therapy. C,D), after therapy. E) graph presenting the degree of improvement	89
Fig. (19)	Moderate improvement in skin pigmentation A,B), before therapy. C,D), after therapy. E) graph presenting the degree of improvement	90
Fig. (20)	Pain in the studied patients	92
Fig. (21)	Erythema in the studied patients	92
Fig. (22)	Wrinkle reduction after treatment and follow up	94
Fig. (23)	Skin texture after treatment and follow up	94
Fig. (24)	Skin pigmentation after treatment and follow up	95
Fig. (25)	Patient satisfaction after treatment and follow up	95

Introduction

Cutaneous aging is a complex biological phenomenon affecting the different constituents of the skin (*Farage et al.*, 2008). There are two independent, clinically and biologically distinct processes affecting the skin simultaneously. The first is the innate or intrinsic aging, 'the biologic clock' that affects the skin by slow irreversible tissue degeneration. The second process is the extrinsic aging, which is the result of exposure to outdoor elements namely the photoaging (*Sjerobabski-Masnec and Situm*, 2010).

Aging skin presents various unpleasant looking morphological changes such as wrinkles, dyspigmentation, telangiectasia and loss of elasticity. Both chronological and environmental influences are involved in the aging process of the skin, among which photodamage is one of the most important components (*Lee et al.*, 2007).

Various rejuvenation modalities have attempted to reverse the signs of photo-and chronological aging. At the center of these treatments have been ablative methods which remove the epidermis and induce a controlled form of skin wounding to promote collagen biosynthesis and dermal matrix remodeling such as dermabrasion, chemical peels and ablative laser resurfacing with carbon dioxide (Co2) or erbium: yttrium -aluminum - garnet (Er: YAG) lasers or a combination of these wavelengths (*Airan and Hruzan*, 2005)

Non ablative skin rejuvenation aims to improve photoaged skin without destroying the epidermis (*Dierickx*

and Anderson, 2005). It has been arbitrarily classified into two types, type I and type II photorejuvenation. The former primarily targets irregular pigmentation and telengiectasia and includes intense pulsed light (IPL) sources, 532 nm potassium -titanyl-phosphate (KTP) lasers and 585/595nm pulsed dye lasers (PDL), while the latter aims for wrinkles reduction and skin lightening and utilizes 1064 and 1320nm neodymium: yttrium- aluminum - garnet (Nd: YAG) lasers, 1450nm diode lasers and 1540nm erbium glass lasers (*Trelles et al.*, 2004).

Light may promote rejuvenation process via non thermal light modulation (*Ji et al.*, 2014). The light emitting diode (LED) is a novel light source for non ablative skin rejuvenation. It is considered to be effective for improving wrinkles and skin laxity, thus being classified under type II photorejuvenation (*Russel et al.*, 2005). LED phototherapy is a treatment which stimulates cell activities and functions through a photobiomodulative effect. Photobiomodulation is the process where the incident photons are absorbed by chromophores to modulate various cell functions and is believed to result in new collagen synthesis leading to rejuvenation (*Sauder*, 2010).

Aim of the study:

Is to determine the clinical efficacy of LED phototherapy for skin rejuvenation.