Biological Activities of Fermented Soybean Products against Food – borne Microorganisms and Animal Diseases

by

Mai Mohamed Magdy Naeam B.Sc. Cairo University, 2002

In Partial Fulfillment of the Requirements for the Degree of Master of Science (Microbiology)

Botany Department
Faculty of Science
Cairo University

الفاعلية البيولوجية لمنتجات فول الصويا المتخمرة ضد ميكروبات الغذاء الحيوان

إعداد مى محمد مجدى نعيم بكالوريوس علوم – جا معة القاهرة

رسالة مقدمة إلى كلية العلوم كلية العلوم كجزء من متطلبات الحصول على درجة الماجستير الميكروبيولوجي)

قسم النبات كلية العلوم جامعه القاهرة

ABSTRACT

Fermented soybean products (miso) were evaluated for their antimicrobial activity against some microorganisms including Gram-positive bacteria, Gramnegative bacteria, yeast (*Candida albicans*) and filamentous fungi (*Aspergillus flavus*, *A. niger, Fusarium verticillioides, Rhizopus stolonifer* and *Sclerotinia sclerotiorum*) using agar plate diffusion method. Soy products are generally rice in its phenolic compounds. Isoflavone contents in miso were also determined using HPLC. The results revealed that the miso products have a remarkable inhibition effect on all the tested bacteria and only the two fungal species, *Candida albicans* and *Fusarium verticillioides*. Increasing the storage period of miso (0, 3 and 6 months), the antimicrobial activity increased. Total microbial populations, lactic acid bacteria and fungal counts (yeasts and moulds) were significantly decreased with increasing the storage period of miso. Amylase, lipase and protease activites of the tested pathogenic bacteria and fungi decreased in presence of miso – products.

In vivo experiment, the body weight gain of rats, total lipids, liver function, kidney function and estrogen hormone were determined under the effect of feeding on miso.

ACKNOWLEDGMENT

At first, I would like to thank GOD that allowing me to achieve this work, without his bless any great effort is invaluable.

The author wishes to express her deepest gratitude and sincere thanks to *Prof. Dr. Mary S. Khalil*, Professor of Microbiology and *Prof. Dr. Mohamed A. Rizk*, Professor of Microbiology in Botany Department, Faculty of Science, Cairo University for their supervision, guidance and valuable directions and advices throughout the whole work.

The author wishes to express her thanks to *Dr. Abeer A. Abu- Zaid*, Lecturer in Food Technology Research Institute, Agricultural Research Center, for the facilities offered to accomplish this work.

Finally, a special thanks should be expressed to all staff of the Microbiology Lab in Soy Factory and friends in Food Technology Research Institute, Agricultural Research Center for their encouragement and help with special thanks to *Dr. Amani Abd el Fattah*.

Dedication

I would like to dedicate this work to my parents that seeded my curiosity and desire for knowledge and thanking them for their unlimited effort, patient and invocation that is unquestionable honored.

Mai Mohamed Magdy

Declaration

THIS THESIS HAS NOT BEEN PREVIOUSLY SUBMITTED FOR ANY DEGREE AT THIS OR ANY OTHER UNIVERSITY

MAI MOHAMED

CONTENTS

CHAPTER I	Page
Introduction	1
Literature Review	4
1.1 Importance of soybean	4
1.2-Polyphenolic compounds	6
1.2.1 Phenolic compounds	6
1.2.1.1 Bioactivities of dietary polyphenols	7
A - Anti-atherosclerosis and cardio protection	7
B- Antimutagenic/anticarcinogenic properties	7
C- Antioxidant and free radical scavenging	
properties	7
D-Antidiabetic effects	8
F-Antibacterial activity	8
1.2.1.2 Classification and occurrence of dietary	
Polyphenols	8
1.2.2 Isoflavones	8
1.2.2.1 Health Benefits of Isoflavones	11
1) Coronary Heart Disease	11
2) Cancer	11
3) Menopause	12
4) Bone Health	13
1.2.2.2 Absorption and Metabolism of Isoflavones	13
1.2.2.3 - Role of isoflavones	14
1. 3- Food Fermentation	14
1.3.1-Nutritional value of fermented foods	15
1.3.2 - Health benefits of fermented foods	16
1.3.3 - Solid state fermentation	17
1.3.4 - Aspergillus oryzae	18
1.3.5-Oriental Fermented Soyfoods	18
1.3.6 - Types of oriental fermented soyfoods	19
1) Soy temph	19
2) Soy taosi	19
3) Soy natto	19
4) Soy sauce	20
5) Soy miso	20
1.3.7 - Microflora in miso	20
1.4 Antimicrobial activity	21
1.4.1 Role of Lactic acid bacteria in miso	21
1.5 Anti -nutritional factors	22
1.5.1 Phytic acid	22

1.6 Enzymes produced in the fermented soybean	
product (miso)	23
1.7 Biological evaluation of miso as fermented	
soybean product	24
2- Materials & Methods	
Materials	26
2.1 Microorganisms	26
2.2 Media used	27
2.3. Raw materials	30
Methods	31
2.4. Fungal inoculum	31
2.5. Miso production	31
a) Koji preparation	31
b) Soybean preparation	31
c) Miso-ricekoji	32
d) Miso – barleykoji and miso – soybeankoji	32
2.6. Chemical analyses of miso products	34
2.6.1 Determination of moisture	34
2.6.2 Determination of crude protein	34
2.6.3 Determination of ash	34
2.6.4 Determination of crude fiber	34
2.6.5 Determination of total hydrolysable	
Carbohydrates	35
2.6.6 Determination of pH value	35
2.6.7 Determination of phenols	35
2.6.8 Determination of Isoflavones	36
2.6.9 Determination of phytic acid	37
2.7 Antimicrobial activity assay	38
2.8 Estimation of microbial population of	
fermented soybean products	39
2.9 Estimation of Enzymes	39
2.9.1 Amylolytic activity	39
2.9.2 Lipolytic activity	40
2.9.3 Proteolytic activity	41
3.1 Determination of Lipid profile	44
3.1.1 Determination of total lipids	44
3.1.2 Determination of serum cholesterol	45
3.2 Kidney function	47
3.2.1 Determination of serum creatinine	46
3.2.2 Determination of urea	48
3.3 Liver function	50

3.3.1 Determination of serum transaminases activities	50
1) Serum glutamic- oxaloacetic transaminase (sGOT)	50
2) Serum glutamic-pyruvic transaminase (sGPT)	51
3.4 Endocrine hormones	51
3.4.1 Determination of esterogen in serum	51
4 Statistical analysis	53
CHAPTER II. Experimental Results	54
1. Chemical analyses	54
1.1. Physico - chemical properties of the fermented	
miso products	54
1.2 Determination of total phenolic compounds	60
1.3 Isoflavone compounds	62
1.4 Phytic acids	69
2. Microbiological studies	71
2.1. Antimicrobial activity	71
2.2 Antifungal activity	79
2.3 Microbial population	82
2.4 Microbial enzymatic activities	84
3. An applied experiment <i>In vivo</i>	86
3.1 Growth (Body weight gain)	86
3.2 Total lipids and cholesterol	89
3.3 Effect of fermented soybean products on	
liver function of female rats	91
3.3.1 Estimation of sGOT	91
3.3.2 Estimation of sGPT	91
3.4 Effect of fermented soybean products on kidney	
function of female rats	93
3.4.1 Estimation of Urea	93
3.4.2 Estimation of Creatinine.	93
3.5 Estimation of estrogen hormone	95
CHAPTER III	
DISCUSSION	.97
Summary 109	
References	
Arabic summary	

TABLES INDEX

Table No.		Page
1	Chemical composition (%) of fermented soybean products made from barley (miso - barley) at storage periods (in months)	55
2	Chemical composition (%) of fermented soybean products made from rice (miso - rice) at storage periods (in months)	56
3	Chemical composition (%) of fermented soybean products made from soybean (miso - soybean)at storage periods (in months)	57
4	Determination of pH value in the fermented soybean products made from rice, barley and soybean at storage periods (in months)	59
5	Total phenolic compounds (ppm) in the fermented soybean product made from barley, rice and soybean. At storage periods (in months)	61
6	Isoflavone compounds (µg/mg) in the fermented soybean products made from barley (miso barley) at storage periods (in months)	63
7	Isoflavone compounds (µg/mg) in the fermented soybean products made from rice (miso rice) at storage periods (in months)	64
8	Isoflavone compounds (µg/mg) in the fermented soybean products made from soybeans only (miso soybean) at storage periods (in months)	65
9	Determination of phytic acid (g/100 g) in the fermented soybean products made from rice, barley and soybean, at storage period (in months)	70
10	Antibacterial activity of fermented soybean products made from barley (miso-barleykoji) against some bacterial pathogens at different storage periods (in months)	62

11	Antibacterial activity of fermented soybean products made from rice (miso-ricekoji) against some bacterial pathogens at different storage periods, (in months)	74
12	Antibacterial activity of fermented soybean products made from soybean (miso-soybean koji) against some bacterial pathogens at different storage periods (in months)	75
13	Antifungal activity of fermented soybean products (miso-rice and miso-barley) against <i>Candida albicans</i> and <i>Fusarium verticillioides</i> at different storage periods (in months)	80
14	Microbial population (CFU/g) in the fermented soybean products due to storage	83
15	Effect of the storage fermented soybean product made from barley (1:3,w/w) on the activity of enzyme of some pathogenic bacteria (µmole)	85
16	Effect of the storage fermented soybean product made from barley (2:1,w/w) on the activity of enzyme of two fungal species <i>Candida albicans</i> and <i>Fusarium verticillioides</i> (µmole)	87
17	Effect of feeding experimental diet on body weight gain (gram) in female rats for 2 months	88
18	Effect of feeding experimental diet on serum lipid profile of female rats (mg/dl) for (2 months)	90
19	Effect of feeding experimental diet on liver function of female rats (mg/dl) for (2 months)	92
20	Effect of feeding experimental diet on kidney function (creatinine,mg/dl) and (urea, mg/dl)	94
21	21. Effect of feeding experimental diet on endocrine hormone (estradiol,mg/dl) for 2 months	96

FIGURES LIST

Fig. No.		Page
1	Classification and occurrence of dietary polyphenols	10
2	Similarity of isoflavones to estrogen	10
3	HPLC chromatogram of miso rice after 6 months	66
4	HPLC chromatogram of miso soy after 6 months	67
5	HPLC chromatogram of miso barley after 6 months	68
6	Antimicrobial activity of fermented soybean products made from barley (miso-barley) against some bacterial and fungal species	76
7	Antimicrobial activity of fermented soybean products made from rice (miso-rice) against some bacterial and fungal species	77
8	Antimicrobial activity of fermented soybean products made from soy (miso-soybean) against some bacterial and fungal species	78

APROVAL SHEET

FOR

Submission of Thesis entitled

Biological Activities of Fermented Soybean Products against Food – borne Microorganisms and Animal Diseases.

By

Mai Mohamed Magdy Naeam

Supervisors committee	
1- Prof. Dr Mary S. Khalil	
Department of Botany	
Faculty of Science, Cairo University	
2- Prof. Dr Mohamed A. Rizk	
Department of Botany	
Faculty of Science, Cairo University	
3- Dr Abeer A. Abu-Zaid	• • • • • • • • • • • • • • • • • • • •
Food Technology	
Research Institute, Agricultural Resear	rch Center

Head of Botany Department

Prof. Dr. Effat F. Shabana

CHAPTER I

INTRODUCTION

Soybean (*Glycine max* L.) is one of the most important crops available to human and animal and can be grown successfully under different climates. Over 4000 years ago, the Chinese discovered the value of the soybeans, a readily available source of edible protein.

The most fermented oriental soy foods in China and Korea is commonly known as jiang; miso in Japan; taucho in Indonesia; and taotsi in the Philippines. miso has been developed in China since 2500 years ago (**Shurtleff** and **Aoyagi**, 1977).

Japan produces approximately 600, 000 tons of miso annually and exports 18528 tons to the USA, 1476 tons to Canada and approximately 3000 tons to Europe.

Long time ago centuries, miso has been an important part of the Japanese diet, a culture that reverses food as medicine. Miso is a smooth paste made from soybeans and /or grains such as rice or barley, salt and mold culture, aged in cedar vats for one to three years. It is good source of protein, calcium and zinc (Messina, 1999).

Soybean was introduced into Egypt in 1954 and was grown in the experimental station of ministry of agriculture. However, it becomes commercially known in 1970 (**El-Bedwy, 1984**).

In Egypt, in 1996 the cultivated area was about 37 thousand feddans which yielded about 40 thousand tons of seeds (**FAO**, **1996**). There is shortage in edible oils and large amounts are imported to overcome this problem. The

governmental policy goal is to increase and expand the cultivated area with soybean which is considered the second oil crop in Egypt beside its high content of protein .Soybean products have attracted increased attention because of their potential to afford protection against a variety of disorders, including cancer, hyperlipemias, osteoporosis, cardiovascular diseases and various forms of chronic renal diseases (**Bhathena** and **Velasquez**, **2002** and **Yamamoto** *et al.*, **2003**).

The antioxidative activity of fermented soybean products, inoculated with *Aspergillus oryzea*, *Rhizopus oligosporum* and *Bacillus natto*, respectively was significantly higher than in non – fermented steamed soybean (Santiago *et al.*, 1992 and Berghofer *et al.*, 1998).