Anorectal Physiological Assessment in Obstructive Defecation

Thesis

Submitted for fulfillment in MSc Degree in

Tropical Medicine

By

Osama Mohamed Abdel Reheem, M.B.B.ch Under Supervision of

Dr Zakaria Abdel latif Salama

Professor of Tropical Medicine

Faculty of Medicine

Cairo University

Dr Ahmed Farag Ahmed

Professor of General Surgery
Faculty of Medicine
Cairo University

Dr Yasmin Saad Ibrahim

Lecturer of Tropical Medicine
Faculty of Medicine
Cairo University

Dr Osama Wafai El bialy

Consultant General Surgery MSc,MRCS

Defence Industry Medical Centre

Faculty of Medicine
Cairo University
2011

Abstract

Background: Functional disorders of the anus and rectum affect 10-20% of the population. Tests of anorectal function can provide useful information regarding the pathophysiology of the disorders that affect continence and defecation

<u>Aim:</u> anorectal physiological assessment of patients with functional obstructive defecation using anorectal manometry, balloon expulsion test and surface EMG and compare their results with normal controls.

<u>Subjects and methods</u>: 20 patients that fulfilling Rome III criteria of functional constipation underwent anorectal physiological testing using anorectal manometry, balloon expulsion test and surface EMG in addition to 10 healthy individuals as a normal controls.

Results: Mean resting pressure in patients and normal controls was 81 and 60 mmHg respectively. The anal canal pressure during straining in patients showed paradoxical increase in relation to the resting pressure in 17 patients (85%) and 3patients (15%) showed decrease by less than 20% of the resting pressure, however in normal controls decreased by more than 20%. Recto anal inhibitory reflex was present in both groups. There was marked hyposensation in 12 patients(60%),4 patients (20%) showed mild anorectal hyposensation, and 4 patients (20%) showed normal rectal sensory thresholds, However in control group there was mild rectal hyposensation in 5 volunteers (50%). All constipated patients failed to expel a 50 cc water inflated balloon within 2 minute and 100% of normal controls succeeded to expel the balloon in less than one minute. Surface EMG showed paradoxical increase in average MUAP base line in 17 patients (85%) and remaining 3 patients (15%) showed mild decrease

in average MUAP base line, however in normal controls it showed decrease in average MUAP base line.

<u>Conclusion:</u> Anorectal physiological testing using anorectal manometry is very helpful in diagnosis of functional obstructive defectaion among constipated patients. Balloon expulsion test is a good screening test for identification of functional constipation.

Key word: Anorectal manometry in functional constipation.

Acknowledgements

Thanks to "Allah" from the start to the end that this work has been completed.

I would like to express my deepest gratitude **to prof. Dr. Zakaria Abdel latif Salama** Professor of Tropical medicine, Faculty of Medicine,

Cairo University for his constant help, encouragement and meticulous constructive advice.

I wish to present plentiful thanks to **prof. Dr. Ahmed Farag Ahmed**, Professor of General Surgery and **Dr. Yasmin saad Ibrahim**, Lecture of Tropical medicine, Faculty of Medicine, Cairo University. Their distinguished care, supervision and noble attitude could not be expressed in words.

I am greatly honored to work under the supervision of **Dr. Osama Wafai El bialy** Consultant of General Surgery, Defense Industries Medical Centre. He has given me much of his time, his guidance, advice and scientific attitude which help to make this work come to light. No words can be sufficient to express my deep gratitude and indebtedness to him.

Finally, I wish to acknowledge **Dr. Mohamed soliman Eita**, Head Manager of Defense Industries Medical Centre and **my family**, for their great support not only in this work but also in my life. They gave me everything and took nothing.

List of tables

Table No	Title	Page
Table (1)	causes of constipation	39
Table (2)	Rome III criteria for functional constipation and defecation disorder.	41
Table (3)	Summary of therandomized controlled trials of bio feedback therapy for dyssynergic defecation.	65
Table (4)	Rome III questionnaire.	76
Results		
Table (I)	Demographic characteristics of case and control groups.	81
Table (II)	Clinical features of case and control groups	82
Table (III):	Laboratory tests in both groups	83
Table (IV):	Anorectal manometrical measurents in both groups	85
Table (V):	RAIR findings in case and control groups	86
Table (VI):	Comparison between case and control groups as regards to rectal sensory threshold	87
Table (VII):	Surface EMG findings in case and control groups	88
Table (VIII):	Balloon expulsion test findings in case and control groups	89
Table (IX)	Correlation between ACL and MRP	90

List of Figures

Review

Figure No.	Title	Page
Figure (1)	Pelvic view of levator ani	5
Figure (2)	Anatomy of anal canal	6
Figure (3)	Relationship between rectal and anal pressures during defecatory maneuvers	27
Figure (4)	Typical examples of a normal motor unit (A) and an abnormal motor unit (B) , as recorded by concentric needle EMG	39
Figure (5)	Impact of chronic constipation on quality of life in patients with dyssynergic defecation, slow transit constipation, and healthy controls.	45
Figure (6)	Manometric Patterns: AttemptedDefecation	51
Figure (7)	the rectal and anal pressure changes and manometric patterns in a patient with Constipation and dyssynergic defecation, before and after biofeedback therapy	59
Figure (8)	continence norm gram	70
Figure (9)	Anorectal water perfused catheter	79
Figure (10)	Manometric pump	79
Results		
Figure (A)	per rectum examination in group I (constipated patients)	82

Figure No.	Title	Page
Figure (B)	MRP and anal canal pressure during straining in case and control groups	86
Figure (C):	Comparison between case and control groups as regards to rectal sensory threshold	87
Figure (D):	Correlation between ACL and MRP	90
Figure (E):	High resting anal canal pressure in a case.	91
Figure (F):	Normal resting pressure in normal control.	91
Figure (G):	Intra rectal pressure in a case.	92
Figure (H):	Intra rectal pressure in a normal control.	92
Figure (I):	Anal canal pressure during squeeze and straining in a case.	93
Figure (J):	anal canal pressure during squeeze and straining in a normal control	93

List of Abbreviations

ACD Anal canal Diameter

ACL Anal canal length

ACP Anal canal pressure during straining

CMAP Compound muscle action potential

DV Dynamic velocity of stool

EMG Electromyography

ERS External anal sphicter

IAS Intenal anal sphicter

IRP intra rectal pressure

MRP Maximum resting pressure

MSP Maximum Squeeze pressure

MUAP Motor unit action potential

OD Obstructive defecation

PEG Poly ethylene glycol

PNTML Pudendal Nerve terminal motor latency

PPC paradoxical puberectalis contraction

RAIR Recto anal inhibitory reflex

Table of Contents

Abstract	l
Acknowledgements	III
List of Tables	IV
List of Figures	V
List of Abbreviations	VII
Table of Contents	VIII
Introduction and aim of the work	
Introduction	1
Aim of the work	3
Review of Litrature.	
Chapter 1 Functional Anatomy and Physiology	4
Chapter 2 Anorectal manometry	14
Chapter 3 Obstructive Defecation	40
Patients and methods	71
Results	83
Dissuction	93
Summary and Conclusion	102
Recommendations	105
Refrence	106
Arabic Summary	128

Introduction Aim of the work,

Introduction

Obstructive defecation (OD) is a broad term of the pathophysiologic condition describing the inability to evacuate contents from the rectum (Geibel; 2006).

This disorder is commonly known by numerous terms, including paradoxical puborectalis contraction (PPC), outlet obstruction, anismus, pelvic floor dyssynergia, nonrelaxing puborectalis syndrome, spastic pelvic floor syndrome, and dyschezia. It may result from functional, metabolic, mechanical, and anatomical derangements involving a rectoanal evacuatory mechanism. Dyssynergia, or uncoordination of the pelvic floor muscles, leads to paradoxical external anal sphincter and puborectalis Contraction with no relaxation during defecation (Rao et al; 1998).

OD may result from rectoanal intussusception, pelvic organ prolapse, rectocele, sigmoidocele, enterocele, solitary rectal ulcer syndrome, PPC and descending perineum syndrome. Other rare causes include rectal hyposensitivity (blunted rectum), idiopathic megarectum, hereditary internal sphincter myopathy and nutcracker anus (**D'Hoore**; 2003).

The Rome foundation has defined the presence of obstructive defecation in the Rome III criteria for functional anorectal disorders as follow:

Diagnostic criteria for functional defecation disorders include those for functional constipation, namely two or more of 6 symptoms present for the last 3 month with an onset more than 6 month in the past; the symptoms are straining, lumpy or hard stools, sensation of incomplete evacuation, sensation of anorectal obstruction/blockage, or manual maneuvers to facilitate defecation on more than 1/4 of bowel movements, or less than 3 bowel movements per week.

To meet criteria for functional defecation disorders, the patient must also undergo objective diagnostic testing and demonstrate at least two of three abnormalities: impaired evacuation of the rectum (balloon expulsion test), inappropriate contraction or less than 20% relaxation of the pelvic floor muscles, and inadequate propulsive forces during defecation (anorectal manometry and EMG)(Bharucha et al; 2006).

Anorectal manometry provides a comprehensive assessment of anal pressures, rectoanal reflexes, rectal pressures, sensation and compliance. A paradoxical increment in anal pressure on straining efforts is a distinctive feature of dyssynergic defectaion. An increment in muscle motor activity on straining may be demonstrated by means of EMG either by intra-anal electrodes or by electrodes taped to the perianal skin (Scarlett et al; 2005).

Aim of the work

This study aims to analyze results of anorectal manometry, rectal sensations assessment, surface EMG and balloon expulsion testing in patients with symptoms of functional obstructive defecation and to compare them with normal controls.

Review of literature

Chapter 1

Functional Anatomy and Physiology

Pelvic Floor

The pelvic floor is a dome-shaped muscular sheet (*Hjartardottir et* al; 1997) that predominantly contains striated muscle and has midline defects enclosing the bladder, the uterus, and the rectum. These defects are closed by connective tissue anterior to the urethra, anterior to the rectum (i.e. the perineal body), and posterior to the rectum (i.e. the postanal plate). Together with the viscera (i.e. the bladder and anorectum), the pelvic floor is responsible for storing and evacuating urine and stool. The levator ani and the coccygeus muscle comprise the two muscular components of the pelvic floor or pelvic diaphragm. The muscles that constitute the levator ani complex are the puborectalis, the pubococcygeus, and the ileococcygeus. These muscles originate at different levels of the pubic bone, the arcus tendinous fascia pelvis (condensation of the obturator internus muscle fascia), and the ischial spine. These muscles are inserted at the level of the rectum, the anococcygeal raphe (levator plate), and the coccyx. It is unclear whether the puborectalis should be regarded as a component of the levator ani complex or the external anal sphincter. Based on developmental evidence, innervation, and histological studies, the puborectalis appears distinct from the majority of the levator ani (Cook et al; 2002).

On the other hand, the puborectalis and external sphincter complex are innervated by separate nerves originating from S2–4, suggesting phylogenetic differences between these two muscles (*Percy et al; 1981*).