Recent Oncoplastic Techniques in Breast Conserving Therapy

An Essay
Submitted for Partial Fullfillment of Master Degree
in General Surgery

 $\mathcal{B}y$

John Thabet FadlAllah Ibrahim

MB.B.Ch Faculty of Medicine - Cairo University

Supervisors

Prof. Dr. Ismail AbdElhakim Kotb

Professor of General Surgery Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Rania Mohamed ElAhmady

Assistant Professor of General Surgery Faculty of Medicine - Ain Shams University

Dr. Sherif Mohamed Mohsen Ismail

Lecturer of General Surgery Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgement

First and before all, thanks to Allah for his care and passion.

I would like to express my deep gratitude and appreciation to **Prof. Dr. Isamail AbdElhakim Kotb** for his kind supervision, support and encouragement.

I am also grateful to **Prof. Dr. Rania Mohamed Elahmady** and **Dr. Sherif Mohsen** for their great effort ,precious advice and assistance throughout this work

I am also indebted to everyone who assisted me in this work. I am deeply grateful to my mother, father and sisters who directed and encouraged me during the preparation of this work.

John Thabet FadlAllah

Contents

List of Abbreviations	i
List of tables	iii
List of Figures	iv
Introduction and Aim of the work	1
Surgical anatomy of the breast	6
Pathology of breast cancer.	23
Diagnosis of breast cancer.	42
Treatment of breast cancer.	51
Recent Oncoplastic Techniques in Breast Conserving	
Therapy	64
Summary and Conclusion.	100
References.	103
Arabic Summary	

List of Abbreviations

ABBI : Advanced Breast Biopsy Instrumentation

system

ALND : Axillary Lymph Node Dissection

BCS : Breast Conservative Surgery

BIRADS : Breast Imaging Reporting and Data System

BRCA : Breast Cancer susceptibility gene

BSE : Breast Self Examination

CMF : Cyclophosphamide, Methotrexate and

Fluorouracil

CT scanDBTDigital breast tomosynthesisDCISDuctal Carcinoma In Situ

EIC : Extensive Intraductal Component

ER : Estrogen Receptor

FFDM: Full-field digital mammography
FISH: Fluorescence in situ hybridization

FNA : Fine Needle Aspiration

HER2/neu : Human Epidermal growth factor Receptor 2

IDC : Invasive Ductal CarcinomaIHC : Immunohistochemistry

ILC : Invasive Lobular Carcinoma
 LCIS : Lobular Carcinoma In Situ
 MRI : Magnetic Resonance Imaging
 MRM : Modified Radical Mastectomy

NAC : Nipple-areolar complex

NSM : Nipple-sparing total mastectomy

OPS : Oncoplastic surgery

PEM : Positron-emission mammography
PET : Positron Emission Tomography

PR : Progesterone Receptor

SA : Subareolar

SERM : Selective Estrogen Receptor Modulator

SLNB : Sentinel Lymph Node Biopsy

List of Abbreviations (Cont)

SSM : Skin-sparing total mastectomy

Tc 99 : Technetium 99

TNM : Tumor/Nodes/Metastasis staging

U/S : Ultrasound

WHO : World Health Organization

List of tables

Table	Title	Page
1	Clinical and pathologic characteristics of	30
	LCIS and DCIS	
2	Classification of Breast Ductal	31
	Carcinoma In Situ (DCIS)	
3	TNM Staging System for Breast Cancer	36
4	TNM Stage Groupings	39

List of Figures

Fig.	Title	Page
1	A. The milk lines in a generalized mammalian embryo.	6
2	Development of the breast.	7
3	Diagrammatic sagittal section through the nonlactating female breast and anterior thoracic wall	9
4	Parasagittal section through the pectoral region	11
5	Diagram of the walls of the axilla	12
6	Blood supply of the breast; drawing from a dissection photograph	15
7	Lymph nodes of the breast and axilla. Classification of Haagensen	16
8	Lymphatic drainage of the breast	18
9	Diagram of lymphatic drainage of the breast	21
10	Death rates for cancer at selected organ sites in females	23
11	International variation in breast cancer incidence and mortality	24
12	Invasive ductal carcinoma with productive fibrosis (scirrhous, simplex, no special type)	32
13	Medullary breast carcinoma	33
14	Lobular carcinoma	35
15	Nipples are inspected for the presence of retraction, inversion, or excoriation	43
16	Comparison between Benign and Malignant Mammography	44
17	MRI showing breast cancer	46
18	List of oncoplastic breast conserving procedures discussed in this paper, organized by tumor location	69

List of Figures (Cont.)

Fig.	Title	Page
19	Radial ellipse segmentectomy	72
20	Circumareolar approach for segmental	75
	resection	
21	Crescent Mastopexy	77
22	Batwing resection	79
23	Resection of a tumor with	80
	macroscopically clear margins	
24	Hemibatwing resection	81
25	Donut mastopexy resection	83
26	Donut mastopexy lumpectomy	84
27	B-flap resection	87
28	Technique after tumor reduction by	88
	neoadjuvant chemotherapy to 1 cm	
	pnT1b	
29	Central quadrantectomy	90
30	Triangle resection	93
31	Inframammary Resection	95
32	Reduction mammoplasty	99

Introduction

The breast is an important symbol of femininity. It plays an important role in the woman's life whether functionally, psychologically or emotionally. Those with breast deformities often experience loss of self confidence that may affect their everyday life and may lead to adverse consequences including anxiety, depression and change in body image. (Roth and Lowery, 2005).

The World Health Organization has ranked breast cancer as the most common type of cancer among women world-wide. The incidence rates of breast cancer vary worldwide, with higher rates in North America, Northern and Western Europe; intermediate rates in South America and Southern Europe; and lower rates in Africa and Asia. (Ferlay J et al.,2008).

Breast cancer accounts for 38% of all new cancer cases among women living in Egypt. The age standardized rate (ASR) for breast cancer incidence in Egypt is 37.3 compared to 76 in the United States. Although incidence remains significantly lower than in highly developed countries, rates are steadily increasing (Dey S et al.,2010).

Surgical treatment is aimed at removal of the whole tumour with clear margins. Breast conserving operations remove the tumour with a rim of surrounding normal tissue and leave behind the rest of the breast tissue. Mastectomy is recommended for large tumours, widespread, multifocal_or advanced local disease. Removal of lymph nodes from the axilla (armpit) on the side of the tumour is used to

Introduction and Aim of The Work

determine further treatment and prognosis (Jacqueline Lewis 2011).

Breast conservation surgery (BCS) is established as a safe option for most women with early breast cancer. Recently, advances in oncoplastic techniques have reduced surgical trauma and thus are capable of preserving the breast form and quality of life. In spite of the most BCS defects can be managed with primary closure, the aesthetic outcome may be unpredictable (Alexandre Mendonça et al., 2013).

Breast reconstruction following mastectomy can be carried out either immediately or as a delayed procedure. Immediate reconstruction is carried out at the same time of surgery while delayed may be performed at any time following mastectomy (John Wiley, 2011).

Immediate reconstruction is clearly preferred over delayed reconstruction, as it is associated with fewer complications, easier administration of postoperative radiation therapy, better aesthetic results, and possibly lower rates of local recurrence. Patients are more satisfied with the cosmetic outcome of oncoplastic procedures compared with breast conservation therapy alone. Successful oncoplasty requires thorough patient counseling and comprehensive preoperative planning among patient, oncologist, and general and plastic surgeons (Glough KB 2002).

Through different approved studies, a methodological approach was developed to improve multidisciplinary cancer therapy to evaluate, treat, and study women with breast cancer. This scientific approach has become an accepted cornerstone for obtaining optimal patient outcomes and is similarly

Introduction and Aim of The Work

relevant to the introduction of new oncoplastic surgical techniques. (Fisher B et al., 2002).

Oncoplasty originally defined as an assortment of volume replacement techniques performed by plastic surgeons to replace all or part of the resected breast volume with myocutaneous tissue flaps, the definition of oncoplastic surgery has more recently been expanded to include a wide range of volume displacement or volume redistribution procedures performed by breast surgeons and general surgeons to optimize breast shape and breast volume following breast cancer surgery (**Rew DA 2005**).

Also included in the definition of "oncoplasty" is the surgical correction of breast asymmetry achieved by reducing or reconstructing the contralateral breast. The emergence of oncoplastic surgery reflects a growing appreciation for the importance of breast cosmesis and the willingness of many surgeons to obtain advanced training to improve cosmetic outcomes for their patients (**Rew DA 2005**).

Oncoplastic techniques are especially indicated for large tumors, for which standard breast-conserving approaches have a high probability of leaving positive margins associated with heightened local recurrence risk and/or creating unacceptable deformity of the breast (Asgeirsson KS et al.,2005).

There are two fundamentally different types of approach to breast-conserving reconstruction: volume displacement techniques and volume replacement techniques. In volume displacement techniques, the resection defect is reconstructed from 'pedicles' that are raised within the breast tissue itself. These 'pedicles' or parenchymal flaps, are moved into the gaps

Introduction and Aim of The Work

left behind after resection. As a result, there is a net loss in volume of the breast so, although the shape of the breast is good, the volume of the affected breast is less than the other side. Because of that, it is common to carry out a mirror-image procedure to match the breasts (Alexandre Mendonça et al., 2013).

Volume displacement techniques are based on wellestablished methods of breast reduction or reduction mammoplasty:

- Superior pedicle
- Round block
- Inferior pedicle

(Alexandre Mendonça et al., 2013)

In volume replacement techniques, the defect caused by the tumour resection is reconstructed, usually with autologous tissue from outside the breast, so you are importing volume into that defect, which is moved and sutured into the gap. The big difference here is that the volume of the breast is much the same as before surgery, and sometimes a little greater. Because of this, there is no need for a contralateral procedure to achieve symmetry (Alexandre Mendonça et al., 2013).

Volume replacement techniques also fall into three main subgroups, using either:

- myocutaneous flaps of latissimus dorsi
- myosubcutaneous flaps of latissimus dorsi, or
- lateral adipose tissue

(Alexandre Mendonça et al., 2013)

Aim of the Work

This essay is made to review the most commonly performed oncoplastic breast conserving procedures for optimizing tumor resection and cosmosis.

Chapter one

Surgical Anatomy of the Breast

Embryology & Development of the breast

During the second month of gestation, two bands of slightly thickened ectoderm appear on the ventral body wall extending from above the axilla to below the groin. These bands are the milk lines and represent potential mammary gland tissue (Fig.1). In humans, only the pectoral portion of these bands will persist and ultimately develop into adult mammary glands. (*Velanovich V. 1995*)

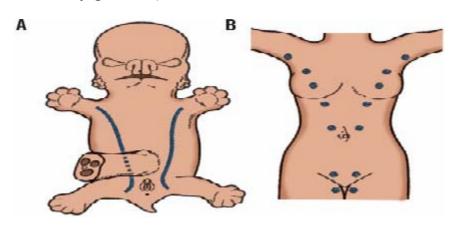


Fig.(1): A. The milk lines in a generalized mammalian embryo. Mammary glands form along these lines. B. Common sites of formation of supernumerary nipples or mammary glands along the course of the milk lines in the human. (*Velanovich V. 1995*)

The glandular portion of the breast develops from the ectoderm. It arises from the local thickening of the epidermis (Fig. 2A). From this thickening, 16 to 24 buds of ectodermal cells grow into the underlying mesoderm (dermis) during the twelfth week (Fig. 2B). These buds, at first solid, will become canalized near term to form the lactiferous ducts (Fig. 2C). The tips of the buds will give rise to the secretory acini during lactation. The epidermal surface of the future nipple is at first a

shallow pit (Fig. 2D). Near term it becomes everted (Fig. 2E) . (Skandalakis JE and Gray SW. 1994)

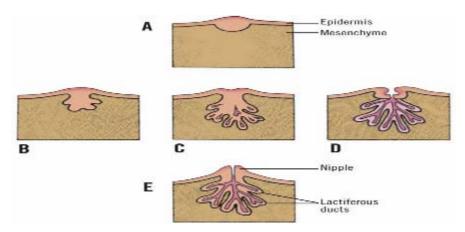


Fig. (2): Development of the breast. A-D. Stages in the formation of the duct system and potential glandular tissue from the epidermis. Connective-tissue septa are derived from the mesenchyme of the dermis. E. Eversion of the nipple near birth. (Skandalakis JE, et al., 1983)

The mammary glands are often considered to be modified sweat glands. The areolar glands (of Montgomery) around, but not on the nipple, appear to be transitional between sweat and lactiferous glands. They serve to lubricate the nipple during lactation (milk production and nursing). The connective-tissue stroma of the breast forms from the mesoderm, which will form the dermis of the skin and the superficial fascia (tela subcutanea) as well. Fibers forming the suspensory ligaments (of Cooper) will develop from both layers. (Yerra L, et al., 1997)

Morphology

Each breast is composed of between 15 and 20 lobes within the superficial fascia, which is loosely connected with the deep fascia. These lobes, together with their ducts, are anatomic units, but not surgical units. Between the superficial