ROLE OF LAPAROSCOPY IN MANAGEMENT

OF COLORECTAL CARCINOMA

Essay Submitted for Partial Fulfillment of Master Degree In General Surgery

By
AHMED ABD EL SALAM ABD EL KADER
M B B CH

Supervised by

PROFESSOR Dr. AHMED ABD EL AZIZ ABU ZID

Professor of General Surgery Faculty of Medicine Ain Shams University

DR. TAREK YOUSSEF AHMED YOUSSEF

Lecturer of General Surgery Faculty of Medicine Ain shams University

> Faculty of Medicine Ain shams University 2011

رسالة مقدمة من الطبيب/ أحمد عبد السلام عبد القادر بكالوريوس الطب والجراحة العامة

توطئة للحصول على درجة الماجستير في الجراحة العامة

تحت إشراف

الأستاذ الدكتور

أحمدعبد العزيز ابو زيد

أستاذ الجراحة العامة كلية الطب جامعة عين شمس

الدكتور طارق يوسف احمد يوسف

> مدرس الجراحة العامة كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١١

Summary

Laparoscopy has improved the surgical treatment of various diseases due to its limited surgical trauma and has developed as an interesting therapeutic alternative for open colorectal surgery. The applicability of laparoscopy to colorectal carcinoma continues to expand.

In laparoscopic management of colorectal carcinoma, it is important to standardize the preoperative and the postoperative care plans, so that optimal results can be obtained. Also appropriate patient choice and differences in surgical techniques or surgeon's skills may account for the great variability in outcome.

Laparoscopic-assisted colectomy for Colon cancer has been shown to be safe, with equivalent long-term survival rates to conventional open colectomy and better short-term patient outcomes. However, LAC tends to require more operating theatre time and disposable equipment. LAC for Colon cancer appears to be cost-effective relative to open colectomy. Expected future reductions in operating times, conversion rates and postoperative stays will further improve cost-effectiveness.

In rectal cancer, technical hurdle as well as doubt on oncological clearance had once limited sphincter preservation to carcinomas located at the recto sigmoid junction or in the upper rectum. Progress in technology and skills, however, has finally led to the controversial extension of minimally invasive techniques to distal rectal cancer with sphincter preservation. Generally laparoscopic management of colorectal carcinoma has a lot of advantages including decreased postoperative pain, early discharge from the hospital, less duration of postoperative ileus, less postoperative adhesions, less morbidity, less wound infection, less intraoperative blood loss, and improved cosmoses.

Contents

Chapter	Content	Page
Chapter 1	Introduction and Aim of the Essay	1
Chapter 2	Surgical Anatomy of the Colonand rectum	4
Chapter 3	Surgical Pathology of Colorectal Carcinoma	27
Chapter 4	Diagnosis of colorectal carcinoma	35
Chapter 5	Different Techniques And Instruments Of Laparoscopic Management of colorectal carcinoma	48
Chapter 6	Laparoscopic Management of Colorectal Carcinoma	61
Chapter 7	Advantages, Disadvantages and Complications of Laparoscopic Management of Colorectal Carcinoma	139
Chapter 8	Summary and Conclusion	154
Chapter 9	References	156
Chapter 10	Arabic summary	

Tables

	Table	Page
Table	1: Stages and prognosis for colorectal cancers	32
Table	2: Specific instruments recommended for diagnostic laparoscopy	42
Table	3: Advantages and disadvantages of hand-assisted laparoscopic surgery	60
Table	4: Specific instruments recommended for laparoscopic right colectomy	62
Table	5: Specific instruments recommended for laparoscopic sigmoidectomy	75
Table	6: Specific instruments recommended for laparoscopic total colectomy	94
Table	7: Specific instruments recommended for laparoscopic anterior resction	113

Figures

	Figure	Page
Fig.	1. Rectum in male and female	9
Fig.	2. Blood supply of the colon	10
Fig.	3. Blood supply of the colon	10
Fig.	4. The portal venous circulation	12
Fig.	5. Lymphatic Drainage of the colon	12
Fig.	6. Rectal and anal canal arteries	14
Fig.	7. Lymphatic drainage of rectum and anal canal	14
Fig.	8. Just below the liver the hepatic flexure, duodenum, and pancreatic head	15
Fig.	9. The splenic flexure may be seen by lifting the omentum	16
Fig.	10. Just inferior to the splenic flexure	16
Fig.	11. By retracting the small bowel to the right side	17
Fig.	12. During the surgical mobilization of the sigmoid colon	17
Fig.	13. During a surgical dissection of the origin of the inferior	17
Fig.	14. With a patient in the Trendelenburg position	18
Fig.	15. Major vessels of the right colon may be appreciated	19
Fig.	16. As the right colon is mobilized, the retroperitoneal structures	19
Fig.	17. Vessels of the transverse colon and major structures	19
Fig.	18. In the left inguinal region, the relationships	20
Fig.	19. A broad view of the pelvis is seen during laparoscopy	20
Fig.	20. Lifting up on the right uterine adnexa permits	21
Fig.	21. After complete mobilization of the rectum	21
Fig.	22. umblical ligament (transperitoneal view of right hemipelvis	22
Fig.	23. pouch of douglas	23
Fig.	24. Base of vasculodeferential triangle	24
Fig.	25. Diagrammatic representation of two forms of sessile polyp	27
Fig.	26. Polyps of colon as revealed by colonoscopy	27
Fig.	27. A, Pedunculated adenoma showing a fibrovascular	30

Fig.	28. A- Familial adenomatous polyposis in an 18-year-old	30
Fig.	29. Carcinoma of the caecum	33
Fig.	30. Carcinoma of the descending colon	33
Fig.	31. Positions of the surgical team and equipment	42
Fig.	32. Cannula positions for the diagnostic laparoscopy	43
Fig.	33. A laparoscopic ultrasound probe can be readily used	44
Fig.	34. "Rtmning" of the small bowel begins with appropriate	45
Fig.	35. Running the bowel using the "hand-over-hand" technique	46
Fig.	36. Diagnostic laparoscopy nearly always affords an excellent	46
Fig.	37. The Veress needle is held between the surgeon's thumb and index finger	50
Fig.	38. The Hasson cannula is introduced into the body wall using two fascial sutures	51
Fig.	39. Optical access trocar is inserted into the abdominal wall.	51
Fig.	40. A popular laparoscopic needle driver (parrot beak) and assistant grasper	52
Fig.	41. Specimen extraction using a plastic bag equipped with a draw string	53
Fig.	42. Laparoscopic Straight linear cutter (SLC) stapler	55
Fig.	43. Computerized gastrointestinal stapling devices	56
Fig.	44. Vessel sealing devices (LigaSure) A 10 mm and B 5 mm	57
Fig	45. Ligation of the ileocolic vessels using the LigaSure 10 mm instrument	57
Fig.	46. Longitudinal cut- way view of ultrasonic Shears	58
Fig.	47. Hand-access device	60
Fig.	48. Positions of the equipment and the surgical team	62
Fig.	49. The surgeon assumes a position between the legs	63
Fig.	50. Positions of the cannulae for the right colectomy	64
Fig.	51. Good visualization of the right mesocolon is achieved	64
Fig.	52. Definitive identification of the ileocolic pedicle	64
Fig.	53. Various approaches to the right colon mobilization	65
Fig.	54. The surgeon's first step in the dissection is to mark	66
Fig.	55. From between the legs, the surgeon dissects	66
Fig	56. The origins of the ileocolic artery and vein are identified	67
Fig.	57. Anatomic variations of the origin of the ileocolic vessels	67
Fig.	58. Dissection of the ventral side of the superior mesenteric vein	67
Fig.	59. Accessory middle colic or right colic veins are clipped	68

Fig.	60. The peritoneum is incised along the base of the ileal mesentery	69
Fig.	61. The right mesocolon is dissected away	69
Fig.	62. The venous anatomy between the hepatic flexure	70
Fig.	63. With earlier steps accomplished, the hepatocolic ligament	70
Fig.	64. Finally, the tumor-bearing segment of the right colon	71
Fig.	65. After drawing out the right colon using a wound protector	71
Fig.	66. Appearance of the abdomen after the completion	71
Fig.	67. Positions of the equipment and the surgical team	75
Fig.	68. Positions of the cannulae for laparoscopic sigmoid colectomy	77
Fig.	69. Active positioning using gravity produces optimum exposure	78
Fig.	70. The uterus can be suspended to the abdominal wall	79
Fig.	71. Initial dissection starts with an incision of the sigmoid	80
Fig.	72. The dissection behind the IMA involves preservation	80
Fig.	73. Radical lymphadenectomy involves exposure	81
Fig.	74. The IMA is divided 1—2cm distal to its origin	81
Fig.	75. The IMV is divided in a safe area between	82
Fig.	76. An avascular plane exists between Toldt's fascia	83
Fig.	77. Lateral dissection then proceeds after the previous	84
Fig.	78. The dissection of the upper rectum should proceed	84
Fig.	79. After upper rectal mobilization, area of mesorectal	85
Fig.	80. Distal bowel division is performed through	85
Fig.	81. Proximal bowel division is performed after dividing	86
Fig.	82. Medial to lateral dissection beneath the left mesocolon	87
Fig.	83. Specimen extraction at the suprapubic site	88
Fig.	84. After specimen extraction, the proximal colon is drawn out	89
Fig.	85. The anvil and center rod of the circular stapler	89
Fig.	86. The bowel is reintroduced into the abdominal cavity	90
Fig.	87. Reestablishment of the pneumoperitoneum	90
Fig.	88. The anastomosis is then done under laparoscopic	90
Fig.	89. After firing the stapler, the anastomosis is checked	90
Fig.	90. Positions of the equipment and the surgical team	93
Fig.	91. Positions of the equipment and the surgical team	93

Fig. 92. Positions of the equipment and the surgical team	94
Fig. 93. Positions of the cannulae for laparoscopic total abdominal	95
Fig. 94. Dissection is commenced at the sacral promontory	96
Fig. 95. Dissection is continued superiorly beneath the IMA	96
	97
Fig. 96. After creating a peritoneal window to the left	
Fig. 97. The left colic artery and vein are ligated separately	98
Fig. 98. The left mesocolon is dissected away from	98
Fig. 99. The mesorectum is divided sharply	98
Fig. 100. The rectum is next divided from the right side	98
Fig. 101. The colon is reflected medially and dissection of the lateral	100
Fig. 102. Separation of the omentum from the colon	100
Fig. 103. Splenic flexure mobilization may be expedited	100
Fig. 104. Phase III begins with an incision just below	102
Fig. 105. After mobilizing the pedicle, it is ligated	102
Fig. 106. The ileal and right colonic mesenteric attachments	102
Fig. 107. Just cephalad to the ligated ileocolic pedicle	103
Fig. 108. The ligation of the middle colic vessels may be safer	103
Fig. 109. Attachments of the ileum just medial to the base	105
Fig. 110. The last lateral adhesions of the right colon are incised	105
Fig. 111. The hepatocolic ligament is divided from medial to lateral	105
Fig. 112. The entire colon may then be pulled out	106
Fig. 113. After removing the entire colon	107
Fig. 114. After passing the circular stapler up to the top	107
Fig. 115. A standard double-stapled technique is used	127
Fig. 116. Mesenteric vascular connections between the left colic	108
Fig. 117. Positions of the equipment and the surgical team	113
Fig. 118. Positions of the cannulae for the laparoscopic anterior	114
Fig. 119. Dissecting plane from the medial or lateral sides	115
Fig. 120. In the medial approach, the superior rectal	115
Fig. 121. It is always an option to perform dissection laterally	116
Fig. 122. Once the adventitious tunica of the inferior mesenteric	119
Fig. 123. Next, the inferior mesenteric vein and the left colic artery	119

Fig.	124. The rectal dissection starts from the right side	119
Fig.	125. With careful traction and countertraction by the surgeon	120
Fig.	126. Next, the peritoneal reflection is incised	121
Fig.	127. The lateral ligaments are placed under tension	121
Fig.	128. With tension applied to the left side of the rectum	122
Fig.	129. An endoscopic linear stapler is introduced	122
Fig.	130. A transanally introduced circular stapler	123
Fig.	131. The double-stapled anastomosis is performed	123
Fig.	132. After resection, the staples should be evaluated	123
Fig.	133. Positions of the equipment and the surgical team	128
Fig.	134. Positions of the cannulae for the laparoscopic APR	129
Fig.	135. Initial dissection involves incising the peritoneum	130
Fig.	136. The IMA is divided using a LigaSure 5mm device	130
Fig.	137. Dissection is then continued medial to lateral	131
Fig.	138. When the ureter cannot be easily identified	131
Fig.	139. The IMV is ligated only if the ureter is identified	132
Fig.	140. Lateral attachments of the sigmoid colon	133
Fig.	141. Using triangulating tension, the sigmoid mesocolon	133
Fig.	142. Proximal resection line is next incised with an endoscopic	133
Fig.	143. Posterior mobilization is initiated next at the sacral	134
Fig.	144. As the posterior rectal mobilization proceeds	134
Fig.	145. At the level of the lateral stalks, the pelvic plexus	135
Fig.	146. It may be highly useful to use the surgeon's	136
Fig.	147. Just as in the rectal mobilization	137

List of Abbreviations

APC	Adenomatous polyposis coli
APR	Abdominoperineal resection
CD	Chron's disease
CDS	Complicated Diverticulosis of the Sigmoid
HLA	Human leucocytes antigen
UC	Ulcerative Colitis
NHMRC	National Health and Medical Research Council
AJCC	The American Joint Committee on Cancer
HALS	Hand-assisted Laparoscopic Surgery
LAC	Laparoscopic-assisted Colectomy
ос	Open Colectomy
ТМЕ	Total Mesorectal Excision
COLOR	Colon Carcinoma Laparoscopic or Open Resection
ACL	Anococcygeal ligament
ACRS	American Society of Colon and Rectal Surgeons
APR	Abdominoperineal resection
AS	Anal sphincter
BL	Broad ligament
CEA	Carcinoembryonic antigen
DCBE	Double contrast barium enema
DRE	Digital rectal exam
EIA	External iliac artery
EIV	External iliac vein
EAES	European Association of Endoscopic Surgeons
FAP	Familial adenomatous polyposis
FOBT	Blood Fecal occult test
FT	Fallopian tube
GFN	Genitofemoral nerve
GV	Gonadal vessels

HALS	Hand-assisted laparoscopic surgery
HF	hepatic flexure
HN	Hypogastric nerve
HNPCC	Hereditary nonpolyposis colorectal cancer
ICA	Ileocolic artery
ICV	Ileocolic vein
IIA	Internal iliac artery
IIR	Internal inguinal ring
IMA	Inferior mesenteric artery
IMV	Inferior mesenteric vein
L bMCA	Left branch of the middle colic artery
LCA	Left colic artery
LIQ	The Left lower Quadrant
LUL	Latral umblical ligament
LUQ	The Left Upper Quadrant
MCA	Middle colic artery
MCV	Middle colic vein
MUL	Medial umblical ligament
Pb	Pancreatic body
PET	Positron emission tomography
PF	Pelvic floor
RA	Renal artery
RALC	Right-angled linear cutter
RIQ	The Right lower Quadrant
RUQ	The Right Upper Quadrant
SC	Sigmoid colon
SF	Splenic flexure
SLC	Straight linear cutter stapler
SMA	Superior mesenteric artery
SMV	Superior mesenteric vein
TC	Transverse colon
UF	Uterine fundus

Introduction

Colorectal cancer is the third most common malignant disease and the second most frequent cause of cancer related death in the western Countries, with 145,290 new cases and 56,290 deaths occurred in 2005. Worldwide, colorectal cancer is the fourth most commonly diagnosed Malignant disease, with an estimated 1,023,000 new cases and 529,000Deaths each year (**Jemal et al., 2005**) .

It is the third most common cancer in both men and women in the United States (Lui &Crawford, 2005) .Colorectal cancer is the second most prevalent cancer in the developed world and the third most prevalent in developing nations.(Pisani P et al., 2002).Colon cancer is becoming common in Egypt. Its also has unique characteristics that differ from those reported in the western countries.(Abeer A. Bahnassy et al., 2002).

Improved laparoscopic skills and introduction of new instruments have led to broad applications of laparoscopy in benign and malignant diseases. Recently, institutional and multicenter randomized trials have shown that laparoscopic surgery for colorectal cancer is safe and an acceptable alternative for open surgery (Leung et al, 2004).

Minimally invasive techniques are being refined for colorectal cancer surgery with well documented advantages of less postoperative pain, reduced ileus, shorter hospital stay, better cosmosis and earlier return to work. In the hands of experienced laparoscopic and colorectal surgeons, the initial concerns over port site recurrences are probably unfounded and the long-term survival at least comparable with open surgery. (Lumley J et al., 2002).

Laparoscopy has improved the surgical treatment of various diseases due to its limited surgical trauma and has developed as an interesting therapeutic alternative for open colorectal surgery. The applicability of laparoscopy to colorectal diseases continues to expand. Laparoscopic approach should be mainly considered for patients with benign conditions, For colorectal cancer, results from randomized trials so far have been favorable. (Chung C.C, et. al 2003).

Laparoscopic colorectal surgery for advanced colorectal carcinoma is controversial because of the technical difficulties in lymph node dissection. (Yamato Watanabe M.H et al., 2001)

On the other hand, in stage IV colorectal cancer, patients who underwent palliative laparoscopic surgery, the laparoscopic surgery might facilitate effective palliation in selected patients, with the avoidance of a major laparotomy. (Hartley J.E et al., 2002).

There are three basic roles of laparoscopic surgery for patients with colorectal cancer. First, although infrequently needed prior to therapy, diagnostic or staging laparoscopy may be valuable in certain colorectal cancer patients. Second, the laparoscopic approach may offer several attractive features for the palliative management of patients with incurable colorectal cancer. Finally, although this issue is the most controversial, there are theoretic but unproved advantages of using laparoscopic techniques for curative colorectal cancer therapy. The concerted efforts of surgical oncologists and their colleagues must prove this theory in well constructed trials. (Milson J.W et al., 2004).

Studies confirmed reduction in conversion rates with experience and highlighted that the learning curve is quite prolonged, with improvement noticeable even after several years. However, such results should be interpreted with some caution, as with increasing experience, surgeons tend to undertake more challenging cases, which may skew the results. In various studies, although the conversion rates have decreased with experience, there has been no significant change in the duration of surgery. The main reason for conversion in these studies was adhesions, which is similar to other series. Better case selection may also contribute to reduction in conversion rates (**Shah et al, 2005**).