CLINCAL SIGNIFICANCE OF CYP2D6*4 POLYMORPHYSM IN PATIENTS WITH LIVER CIRRHOSIS

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

Ву

Lamiaa Reda Abd EL Rahman El Nashar

M.B.B.Ch. Ain Shams University

Under the Supervision of

Professor. Perihan Hamdy Tawfik

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor, Hoda Ahmed Abd El-Sattar

Lecturer of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor. Zeinab Mohamed Hefny

Lecturer of Tropical Medicine Faculty of Medicine- Ain Shams University

Faculty of Medicine

Ain Shams University

2016

- All praise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to **Prof. Perihan Hamdy Tawfik**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- I am also grateful to **Dr. Doctor. Hoda Ahmed**Abd El-Sattar Lecturer of Clinical and Chemical
 Pathology, Faculty of Medicine, Ain Shams
 University, who freely gave her time, effort and
 experience along with continuous guidance throughout
 this work.
- To Doctor. Jeinab Mohamed Hefny, Lecturer of Tropical Medicine, Faculty of Medicine, Ain Shams University, who has been a great help with the tedious laboratory techniques and a most gentle supervisor.

🔼 Jamiaa Reda El Nashar

Contents

Subjects	Page
List of Abbreviations	I
• List of Tables	V
List of Figures	VII
• Introduction	1
Aim of the Work	4
• Review of literature	
-Chapter (1): Liver Cirrhosis	5
- Chapter (2): Cytochrome P450 2d6*4 I	Polymorphysm65
Subjects and Methods	96
• Results	109
• Discussion	116
Summary & Conclusion	124
Recommendations	126
• References	127
Arabic Summary	

List of Abbreviations

AAT	:	Alpha-1 antitrypsin
Ah receptor	:	Aryl hydrocarbon receptor
AIH	:	Autoimmune hepatitis
ALL	:	Acute lymphoblastic leukemia
ANLL	:	Acute nonlymphoblastic leukemia
AST/ALT	:	Aspartte aminotrasnferase/Alanine
		aminotransferase ratio
AST/ALT	:	The ratio of aspartate aminotransferase to
ratio, AAR		alanine aminotransferase
ATP-Binding	:	ATP-Binding Cassette
Cassette		
AUC	:	Area under the curve
BCS	:	Budd-chiari syndrome BCS
BMI	:	Body mass index
CF	:	Cystic fibrosis
CFLD	:	Cystic fibrosis liver disease
CFTR	:	Cystic fibrosis transmembrane conductance
		regulator
СНС	:	Chronic hepatitis
CML	:	Chronic myelogenous leukemia
CT	:	Computed tomography
CYP	:	Cytochrome P450
CYP2D6	:	Cytochrome P450 2D6

🕏 List of Abbreviations 🗷

ddNTPs	:	Dideoxynucleotides
DM	:	Diabeties mellitus
dNTPs	:	Deoxynucleotides
ECM	:	Extracellular matrix
EDHS	:	Egyptian Demographic Health Survey
EIA	:	Enzyme immunoassay
ELF	:	Enhanced liver fibrosis
ELISA	:	Enzyme linked immunosorbent assay
EMs	:	Extensive metabolizers
ER	:	Endoplasmic reticulum
FAD	:	Flavin adenine dinucleotide
FHF	:	Fulminant Hepatic Failure
FMN	:	Flavin mononucleotide
Galactose-1-P	:	Galactose-1-phosphate
GALT	:	Galactose-1-phosphate uridyl-transferase
GSH	:	Glutathione
НА	:	Hyaluronic acid
HBV	:	Hepatitis B virus
НСС	:	Hepatocellular carcinoma
HCV	:	Hepatitis C virus
HDV	:	Hepatitis D virus
НН	:	Hereditary hemochromatosis
HSC	:	Hemapoietic stem cell
IFN-α	:	Interferon alpha
IFN-β	:	Interferon beta

🕏 List of Abbreviations 🗷

IFN-γ	:	Interferon gamma	
IHC	:	Immunohistochemistry	
IMs	:	Intermediate metabolizers	
IR	:	Insulin resistance	
MDR	:	Multidrug resistance	
MMPs	:	Metalloproteinases	
MRI	•	Magnetic resonance imaging	
NADH	:	Nicotinamide adenine dinucleotide phosphate	
NADPH	:	Nicotinamide adenine dinucleotide phosphate	
NAFLD	:	Nonalcoholic fatty liver disease	
NAPQI	:	Metabolite-acetyl-p-benzoquinoneimine	
NASH	:	Non-alcoholic steato-hepatitis	
NIBMs	:	Noninvasive biochemical markers	
NT-proCNP	:	Anti-human amino-terminal propeptide of C-	
		type natriuretic peptide	
PAH	:	Polycyclic aromatic hydrocarbons	
PBC	:	Primary biliary cirrhosis	
PDGF	:	Platelet derived growth factor	
PICP	:	Procollagen type I carboxy terminal Peptide	
PICP	:	Procollagen 1 C peptide	
PIIINP	:	Procollagen III ammino peptide	
PMs]	:	Poor metabolizers	

🕏 List of Abbreviations 🗷

PPARgamma	:	Peroxisome proliferator-activated receptor
		gamma
PSC	:	Primary sclerosing cholangitis
RIA	:	Radioimmunoassay
SDS	:	Sodium dodecyl sulfate
SREBP1	:	Sterol regulatory element binding protein 1
TGF-β ₁	:	Transforming growth factor β_1
TGF-β1	:	Transforming growth factor beta 1
ΤΝΓ-α	:	Tumor necrosis factor alpha
UDP galactose	:	Uridine diphosphate galactose
UMs	:	Ultrarapid metabolizers
WD	:	Wilson's disease
WHO	:	World Health Organization
γ-GT	:	Gamma Glutamyl Transferase

List of Tables

Table No	Title	Page
Table (1)	Shows noninvasive direct and indirect	34
	biochemical markers.	
Table (2)	Criteria of BARD score to Evaluate	53
	Fibrosis in Nonalcoholic Fatty Liver	
	Disease.	
Table (3)	The Classification of Liver Cirrhosis	57
	according to Metavir Scoring System.	
Table (4)	Illustrates different fibrosis panels used	60
	for laboratory diagnosis of cirrhosis	
	and their performance characteristics.	
Table (5)	Child-Pugh Classification of liver	63
	diseases.	
Table (6)	Child-Pugh Score Interpretation	63
Table (7)	Classification of cytochrome P450	69
	genes.	
Table (8)	CYP2D6 allele and enzyme activity.	78
Table (9)	Shows selected inducers, inhibitors and	88
	substrates of CYP2D6.	

🕏 List of Tables 🗷

Table No	Title	Page
Table (10)	Descriptive Statistics of the	111
	Demographic and Laboratory Data	
	among Cirrhotic Patients versus	
	Healthy Control Group.	
Table (11)	Descriptive and Comparative Statistics	112
	of the Demographic and Laboratory	
	Data among Cirrhotic Patients versus	
	Healthy Controls Using Student's t	
	Test for the Parametric Data and	
	Wilcoxon Rank Sum Test for Non	
	Parametric Data.	
Table (12)	Descriptive and Comparative Statistics	113
	of the Metabolic Activity of	
	CYP2D6*4 among Cirrhotic Patients	
	versus Healthy Control using Chi-	
	Square test.	
Table (13)	Association of CYP2D6*4 Genotypes	114
	with Age using Chi-Square test.	
Table (14)	Association of CYP2D6*4 Genotypes	115
	with Sex using Chi-Square test.	

List of Figures

Figure No	Title	Page
Fig. (1)	Radio immune assay technique (RIA)	38
Fig. (2)	Principle of ELISA technique	40
Fig. (3)	The FibroTest score (in this case 0.88) indicates the presence of cirrhosis	58
Fig. (4)	Basic steps involved in all DNA extraction methods	103
Fig. (5)	Amplification of DNA by primers	104
Fig. (6)	Genotyping of the CYP2D6*4 gene polymorphism in patients group:	106
Fig. (7)	Genotyping of the CYP2D6*4 gene polymorphism in control group:	107

Introduction

Cirrhosis is the pathological replacement of functional liver tissue with scarred, fibrous and nonfunctional tissue (*Böhm et al.*, 2010). Most forms of late-stage chronic liver disease often manifest cirrhosis. Worldwide, cirrhosis prevalence is increasing with rising incidence of its primary risk factors which include hepatitis virus infection, alcoholism, and non-alcoholic fatty liver disease, however it has many other possible causes (*Schuppan et al.*, 2014).

Cirrhosis is the 10th leading cause of death for men and the 12th for women worldwide. It was found that 7% of all Egyptian deaths annually are associated with either liver cirrhosis or hepatocellular carcinoma, 75-85% of persons with these conditions have either chronic hepatitis B virus infection or hepatitis C virus infection as a contributing cause (*Poynard et al.*, 2012).

Liver biopsy is currently considered the gold standard for assessing cirrhosis. However, it is an invasive and painful procedure, with rare but potential life threatening complications, limiting its acceptance and repetition in asymptomatic patients. In addition, the accuracy of liver biopsy in assessing cirrhosis may be questioned because of sampling error and interobserver variability, which may lead to underestimating of cirrhosis (*Muriel and Arauz*, 2010). Liver biopsy has high specificity (81%-99%) but low sensitivity (36%-57%). Thus there is a need to develop and validate non-invasive tests that can accurately reflect the full spectrum of cirrhosis, and its severity in liver diseases (*FitzGerald et al.*, 2012).

Cytochrome P450 is an enzyme that is encoded by the CYP2D6*4 gene. CYP2D6*4 gene is primarily expressed in the liver. It is also highly expressed in the central nervous system. The cytochrome P450 enzyme system consists of a superfamily of hemoproteins that catalyze the oxidative metabolism of a wide variety of exogenous chemicals including drugs and carcinogens (*Kotlyar et al.*, 2005). Cytochromes P450 enzymes are the most important enzymes in phase I metabolism in liver (*Llerena et al.*, 2009).

Cytochrome P450 enzymes can be inhibited or induced by drugs, resulting in clinically significant drugdrug interactions that can cause unanticipated adverse reactions or therapeutic failures. CYP2D6 is perhaps the most extensively studied polymorphically expressed drug metabolizing enzyme in humans and its polymorphism has a high clinical importance (*Wang et al.*, 2009).

The mechanism of hepatotoxicity of drugs is often unknown, but in some instances the pathogenesis of toxic reactions has been shown to be due to CYP-dependent formation of a reactive metabolite of the parent compound. Drug metabolism is impaired in patients with liver cirrhosis, particularly that mediated by CYP2D6*4, but the usefulness of measuring CYP2D6*4 activity to assess liver cirrhosis remains uncertain (*Carcillo et al.*, 2013).

Aim of the Work

The aim of this work is to detect the association between Cytochrome CYP2D6*4 genotype and liver cirrhosis. And to evaluate its clinical utility for screening of cirrhosis.

Liver Cirrhosis

I-Definition:

Cirrhosis is defined as a chronic degenerative disease in which normal liver cells are damaged then replaced by scar tissue. Cirrhosis is characterized by the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury, that leads to portal hypertension and end stage liver disease. Clinically, cirrhosis has been regarded as an end stage disease that invariably leads to death, unless liver transplantation is done, and the only preventive strategies have been screening for oesophageal varices and hepatocellular carcinoma (Serpagi et al., 2006).

II-Epidemiology:

The burden of liver cirrhosis in Egypt is exceptionally high, maintaining the highest prevalence of hepatitis C virus (HCV) worldwide. Liver cirrhosis represents a major cause of morbidity and mortality worldwide. The World Health Organization (WHO) estimates that in 2008 cirrhosis and primary liver cancer caused 783,000 and 619,000 deaths, respectively. Taken together, these