

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Ain Shams University Faculty of Engineering

Computer Modeling of Insulators In Gas Insulated System (GIS)

M. Sc. Thesis

By

Eng. El-Said Abd El-Samia El-Bagoury

B.Sc. Electrical Power Engineering

Submitted in Partial fulfilment of the requirements for the M.Sc. Degree in Electrical Engineering.

Supervised By

Prof. Dr. Abd El-Razak I. NosseirFaculty of Engineering – Ain Shams University

Prof. Dr. Abd El-Mohymen M. SolimanFaculty of Engineering – Ain Shams University

Dr. Salem M. El-KhodaryFaculty of Engineering – Ain Shams University

2001

BoCKN

Approval Sheet For the thesis entitled

Computer Modeling of Insulators In Gas Insulated System (GIS)

Prepared By

Eng.\ El-Said Abd El-Samia El-Bagoury

B.Sc. Electrical Power Engineering

Submitted in Partial fulfilment of the requirements for the M.Sc. Degree in Electrical Engineering.

Approved By

Name

Dr. Mohamed M. Awad

Director General - Egypt Electricity Holding Company

Prof. Dr. Ibrahim F. Hashad

Faculty of Engineering - Ain Shams University

Prof. Dr. Abd El-Razak I. Nosseir

Faculty of Engineering - Ain Shams University

Prof. Dr. Abd El-Mohymen M. Soliman

Faculty of Engineering - Ain Shams University

300

Signatur

A. Nos

massing

To the one to show the constant to the constan

12.4 (m) 10. The control of the

Browningsberg bourset in recording boundaries the object.

Boundaries and the contraction of the contraction

was the substitute of the subs

15 11 18 20 -

Acknowledgment

The author would like to express his thanks to his supervisors for the best supervision and continuous help.

The author is greatly honored to express his science to **Prof. Dr. Abd El-Razak I. Nosseir**, Electrical Power and Machine Department, Faculty of Engineering, Ain Shams University, for his excellent supervision.

The author wishes to express his deep gratitude to **Prof. Dr. Abd El-Mohymen M. Soliman**, Electrical Power and Machine Department, Faculty of Engineering, Ain Shams University, for his continuos support, unfailing discussion, and valuable instructions, his continuos advises was always simulating and especial to complete this work. Really he was not only a supervisor but also a teacher and advisor to my personal live.

He wishes also to express his deep thanks and appreciation to **Dr. Salem M. El-Khodary**, Electrical Power and Machine Department, Faculty of Engineering, Ain Shams University, for his care, continued guidance, and his assistance during this work.

The author wishes to thank Mr. Mohamed El-Sedawy, The Technical of the High voltage laboratory, Ain Shams University for his cooperation and help.

Finally, the author wish to thank all those how help in preparation of this work in its final form.

CONTENTS

	Page
Abstract	ix
List of Abbreviations and Symbols	xi
List of Figures	xiii
List of Tables	XXV
Chapter I: Introduction.	1
Chapter II: Gas Insulated Systems (GIS).	7
2.1. Advantages And Disadvantages of GIS.	7
2.2. Properties of SF ₆ gas.	9
2.2.1. Physical properties.	9
2.2.2. Chemical properties [11].	11
2.2.3. Electrical properties.	12
2.3. Solid Spacer.	16
2.4. Factors affecting the breakdown voltage of SF ₆	16
2.4.1. Effect of pressure on breakdown voltage for SF ₆	16
2:4.2. Effect of electrode material	19
2.4.3. Conductor conditioning effects	19
2.4.4. Effect of electrode surface roughness	20
2.4.5. Effect of moisture on the break down strength of SF ₆	21
2.4.6. Particle contamination in GIS	22
2.4.7. Conductor coating.	24
2.5. Factor affecting flashover voltage of Insulating spacers in GIS.	25
2.5.1. Spacer-Conductor-Gas (triple junction) point.	25
2.5.2. Spacer - material	25

2.5.3. Spacer Profiles	28	
2.5.3.1. Cylindrical Spacer.		
2.5.3.2. Post Spacer.		
2.5.3.3. Disc Spacer.	29	
2.5.3.4. Conical Spacer.	30	
2.5.4. Type of applied voltage.		
2.5.5. Contamination Effect.		
2.5.6. Effect of accumulated surface charge.		
2.6. Possible Locations of Partial Discharges.		
Chapter III Numerical Methods For Electric Field Calculations	37	
3.1. Introduction	37	
3.2. Finite Difference Method (FDM)	38	
3.3. Finite Element Method (FEM)		
3.4. Monte Carlo Method (MCM)		
3.5. Charge Simulation Method (CSM)		
3.5.1. Basic principles		
3.5.2. Application of CSM to Multi Dielectric Media	48	
3.5.3. Application of CSM on Systems with the Accumulated Surface Charge	52	
Chapter IV Modeling of the system under consideration	55	
4.1. Introduction	55	
4.2. Considered system configuration		
4.2.1. Electrode configuration		

4.2.2. Spacer Configurations		
4.3. Application of charge simulation technique to the considered GIS configurations		
4.3.1. Evaluation of the method	63	
4.3.2. Accuracy principle	65	
4.4. Calculation of the normal and tangential electric field	67	
4.5. Computer programs	69	
4.5.1. Program I: computation of the potential and electric field distributions along the dielectric interface	70	
4.5.2. Program II: Drawing the equipotential and flux lines.	73	
Chapter V Investigation of Different Spacer Configurations	79	
5.1. Introduction	79	
5.2. Electric field and potential distributions for plate-to- plate without spacer	80	
5.3. Electric field and potential distributions for plate-to- plate electrodes with a cylindrical spacer	86	
5.3.1. Accuracy of the simulation	86	
5.3.2. Potential and electric field distributions	90	
5.3.3. Equipotential and flux lines	90	
5.4. Convex spacer of profile (a)	93	
5.4.1. The potential distribution along the dielectric-gas interface for different contact angles	93	
5.4.2. Effect of the contact angle ℓ on the electric field distribution	93	
5.4.3. Effect of varying maximum radius of insulator (G) on the total electric field distribution	95	
5.4.4. Effect of changing spacer materials	95	
5.4.5. Effect of varying H _g on the distribution of total electric	95	

5.4.6. Equipotential and flux lines	96
5.5. Convex spacer of profile (b)	101
5.5.1. The potential distribution along the dielectric-gas interface for different contact angles.	101
5.5.2. Effect of the contact angle θ on the electric field distribution	101
5.5.3. Effect of varying maximum radius of insulator (G) on the total electric field distribution	102
5.5.4. Effect of changing spacer materials	103
5.5.5. Effect of varying H_g on the distribution of total electric field	103
5.5.6. Equipotential and flux lines	103
5.6. Convex spacer of profile (c)	108
5.6.1. The potential distribution along the dielectric-gas interface for different contact angles	108
5.6.2. Effect of the contact angle θ on the electric field distribution	108
5.6.3. Effect of varying maximum radius of insulator (G) on the total electric field distribution	109
5.6.4. Effect of changing spacer materials	110
5.6.5. Effect of varying $H_{\rm g}$ on the distribution of total electric field	110
5.6.6. Equipotential and flux lines	110
5.7. Comments on results of convex spacers	115
5.8. Concave spacer of profile (a)	118
5.8.1. The potential distribution along the dielectric-gas interface for different contact angles	118
5.8.2. Effect of the contact angle θ on the electric field distribution	118
5.8.3. Effect of varying minimum radius of insulator (Y) on the total electric field distribution	119