

Faculty of Women for Arts, Science & Education Biochemistry and Nutrition Department

Metabolomic Response of Feeding Functional Foods and Exercise on Obesity Risk in Rats

Thesis

Submitted to faculty of women for Arts, Science & Education, Ain Shams University for Doctor of Philosophy Degree in Science (Biochemistry and Nutrition)

By Naglaa Mabrouk Abdel-fattah Ammar

(M.Sc., Biochemistry and Nutrition, 2010) Assistant Researcher, Therapeutic Chemistry Department, National Research center

Supervisors

Prof. Dr. Tahani El-Sayed Kholeif

Professor of Biochemistry, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science & Education, Ain Shams University

Prof. Dr. Nora Mohamed Afifi El-Sheikh

Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science & Education, Ain Shams University

Prof. Dr. Abdel Hamid Zaki Abdel Hamid

Professor of Biochemistry, Therapeutic Chemistry Department, National Research Center

Prof. Dr. Nadia Mohamed Said Metwally

Professor of Biochemistry, Therapeutic Chemistry Department National Research Center

Prof. Dr. Mohamed Ali Ali Farag

Professor of Pharmacognosy, Pharmacognosy Department, Faculty of Pharmacy, Cairo University

Acknowledgement

First and foremost, all praise is due to **Allah** for granting me the power and will to perform this work.

My deepest gratitude and sincere appreciations to **Prof. Dr. Tahani El sayed Kholeif,** professor of Biochemistry, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science & Education, Ain Shams University for her valuable supervision, great help and guidance and for her continuous encouragement.

I wish to express my deep thanks, grateful acknowledgement and gratitude to **Prof Dr. Nora Mohamed Afifi El-Sheikh,** Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science & Education, Ain Shams University for her supervision, guidance and kind help during this work.

My utmost and sincere gratitude goes to my thesis supervisor Prof. Dr. Abdel-Hamid Zaki Abdel-Hamid Amer, Professor of Biochemistry, Therapeutic Chemistry Department, National Research Center. His wide knowledge and his logical way of thinking have been of great value for me, his detailed and constructive comments, and for his important support throughout this work. His extensive discussions around my work have been very helpful for this study. His understanding, encouraging and personal guidance have provided a good basis for the present thesis.

My mentor, **Prof. Dr. Mohamed Ali Farag**, professor of Pharmacognosy, Pharmacognosy Department, Faculty of Pharmacy, Cairo University, my cordial thanks for your dedicated efforts, valuable advice, critical comments, thoughtful

guidance and constructive criticism that made the pursuit of this doctoral degree very instructive. I would like to express my sincere thanks for generously sharing his time and knowledge with me. He played a major role in making me understand the concept of research and writing of this thesis.

I acknowledge deeply **Prof. Dr. Nadia Mohamed Said Metwally,** professor of Biochemistry, Therapeutic Chemistry Department, National Research Center for helping me in the experimental part, her kind supervision, persistent support and encouragement during this work.

I wish to express my deep thanks, grateful acknowledgement and gratitude to **Dr. Abd El Nasser El Gendy** Assistant professor in department of Medicinal and Aromatic Plants, National Research Center for his effective help in the GC-MS part of this thesis.

I wish to express my deep thanks, grateful acknowledgement and gratitude to **Prof. Dr. Abdel-Razik Farrag** Professor of Histochemistry, Pathology Department, National Research Center and **Dr. Sawsan Zaitone** Associate Professor at Faculty of Pharmacy, Suez Canal University for their effective help in the histopathological part of this thesis.

With great pleasure, I would like to express my sincere gratitude to the staff members of Therapeutic Chemistry Department, National Research Center for their sincere help and support, and National Research Center for providing the laboratory facilities without which the work could not be accomplished.

Finally my sincere thanks and profound gratitude to my family for their patience, continuous encouragement and support which make this work comes out to the light.

Abstract

Obesity is one of the independent risk factors for serious health problems associated with many ailments and its incidence has increased in recent years as a major health problem worldwide. Obesity induces perturbation in metabolism which demand a corresponding shift in research more focus towards large scale unbiased analytical approaches "metabolomics" by which we can monitor changes in metabolome. Therefore, metabolomics is used in this research to monitor the outcome of treatment with some functional foods and exercises, by observing whether the metabolic phenotypes of treated, diseased rats shifts in the cluster of healthy controls.

Study had been carried out by inducing obesity in the rats through administration of high fat diet (HFD). Obese rats were subsequently treated with functional foods used for obesity management including grapefruit, pomegranate, red cabbage and/or swimming exercise. Histopathological studies and conventional biochemical biomarkers were measured in obese rats. In parallel, serum and urine samples were analyzed using gas chromatography-mass spectrometry (GC-MS) followed by multivariate data analysis to classify samples and determine if such treatments can help revert obesity related metabolic changes back to normal status. Further and to pinpoint active agents in these functional food juices, ultra performance liquid chromatography coupled to high resolution TOF MS was used for profiling of secondary metabolites.

Results from this study led to the identification of key metabolites markers for obesity and changes in their levels upon which were further used to assess the role of functional foods in obesity management. The results showed that obesity is related to lipids, amino acids and central tricarboxylic acid (TCA) pathways. Distinct variations in certain metabolites were recorded in obese rats including L-aspartic, L-alanine, L-glutamine, L-glycine, phenylethanolamine, α -aminobutyric acid, β -hydroxybutyric acid, lactate, phosphate and oxalate. Functional food treatments and exercise were both found to be quite effective in restoring obesity-related metabolic disruptions in obese rats and back to normal status as revealed from orthogonal partial least squares-discriminating analysis (OPLS-DA). Thus, Metabolomics approaches provide essential insights into obese metabolic disturbances and functional foods and/or exercise stratification for obesity management.

List of Abbreviations

AMPK	Activated protein kinase
α - AB	Alpha- aminobutyric acid
AIN-93	American institute of nutrition (1993)
AMDIS	Automated mass spectral deconvolution and
	identification system
B.P.	Base Peak
BMI	Body mass index
BWG	Body weight gain
BCAAs	Branched chain amino acids
CV	Central vein
DNA	Deoxyribonucleic acid
ESI	Electro Spray Ionization
GPR	G- protein-coupled receptors
GC	Gas chromatography
GC/MS	Gas chromatography coupled with Mass
	Spectroscopy
GSH	Reduced glutathione
GK	Goto-Kakizaki
H&E	Haematoxylin and Eosin
Hz	Hertz
HCA	Hierarchical clustering analysis
HFD	High fat diet
h.	Hour(s)
HMDB	Human Metabolome Database
IS	Internal standard
LDH	Lactate dehydrogenase
LSD	Least significant difference

LC	Liquid chromatography
LC-MS	liquid chromatography mass spectrometry
LDL-C	Low density lipoprotein- Cholesterol
MS	Mass spectroscopy
m/z	Mass-to-Charge Ratio
MeOH	Methanol
[M]+	Molecular ion
M.W	Molecular weight
MVA	Multivariate analysis
NIST	National Institute of Standards & Technology
NIH	National Institutes of Health
MSTFA	N-methyl-N-(trimethylsilyl)-trifluoroacetamide
OPLS-DA	Orthogonal Projections to Latent Structures Discriminant Analysis
PLS-DA	Partial least squares discriminant analysis
ppm	Part Per Million
PDA	Photodiode array (detector)
PCA	Principle component analysis
¹ H NMR	Proton nuclear magnetic resonance
PDC	Pyruvate dehydrogenase complex
qTOF	Quadrupole-time-of-flight
ROS	Reactive oxygen species
RI	Retention index
Rt	Retention time
r.p.m	Revolutions per minute
RNA	Ribonucleic acid
ROC	Receiver operating characteristic
SOMs	self-organizing maps

SCFAs	short chained fatty acids
SD	Standard diet
SEM	Standard error of mean
TC	Total cholesterol
TAGs	Triacylglycerols
TCA	Tricarboxylic acid cycle
TMS	Trimethyl silyl
T_2DM	type 2 diabetes mellitus
UPLC	Ultra Performance Liquid Chromatography
UV	Ultraviolet
v/v	Volume per Volume
WAT	White adipose tissue
WHO	World Health Organization

Contents

Title	Page
Introduction	1 4
Aim of The Work	-
Review of Literature	5
1- Obesity	5
1.1 Etiology of obesity	6
1.2 Energy intake	6
1.3 Energy expenditure	7
1.4 Underlying mechanism	7
1.5 The health consequences of obesity	7
1.6 Obesity management	10
2. Functional foods	13
2.1 Components of functional foods	13
2.2 Functional foods as antioxidants	15
2.3 Safety of functional foods	16
2.4 Functional foods used in this study	17
2.4.1 Red cabbage	17
2.4.2 Pomegranate	19
2.4.3 Grapefruit	22
3. Exercise	24
4. Metabolomics	25
4.1 Strategies in metabolomics research	28
4.2 Analytical platforms	29
4.2.1 Gas chromatography mass spectrometry (GC-MS)	29
4.3 Urine and blood analysis in metabolomic studies	30
4.4 Data analysis	31
4.4.1 Spectral deconvolution	31
4.4.2 Metabolite identification	32
4.4.3 Multivariate data analysis	33
4.4.3.1 Unsupervised methods	34
4.4.3.2 Supervised methods	35
4.4.4 Method selection	35
4.5 Metabolomics in nutrition	36
4.6 Metabolic biomarkers for obesity diagnosis and	38
managements	

Title	Page
Materials and Methods	41
I. Materials	41
II. Methods	44
5- Ultra Performance Liguid Chromatography-quadrupole	46
Time Of Flight- with Photodiode Array detector coupled with	
high resolution electrospray ionization mass spectrometer	
(UPLC- qTOF-PDA-ESI/MS)	
5.1 Sample preparation for UPLC/qTOF/PDA/MS analysis	47
5.2 - High resolution UPLC-MS analysis	47
6. Biochemical analysis	48
6.1- Determination of serum glucose	48
6.2 -Determination of serum triacylglycerols (TAGs)	49
6.3 -Determination of serum total cholesterol (TC)	50
6.4- Determination of serum high density lipoprotein	52
cholesterol (HDL-C)	
6.5- Determination of serum low density lipoprotein-	53
cholesterol (LDL-C)	
7- Histological examination	55
8 - Metabolomic analysis	55
8.1- Serum preparation	55
8.2- Urine preparation	56
8.3- GC-MS analysis for serum	56
8.4- GC-MS analysis for urine	56
8.5- Metabolites identification	57
8.6- Data processing for multivariate analysis	57
9 - Statistical Analysis	58
Results	59
1. UPLC-MS profiling of grape fruit, pomegranate and red	59
cabbage juice	
2- Food intake, body weight gain, feed efficiency ratio, body	70
mass index, adiposity index and relative liver weight in	
different experimental groups	
3-Serum lipid profile and glucose levels in different experimental	76
groups	
4-Histological examination of white adipose tissue in	81
different experimental groups	

Title	Page
5-Serum metabolites profiling via GC-MS analysis and multivariate data analyses	87
5.1 GC/MS multivariate data analysis	92
6. Urine metabolites profiling via GC-MS analysis and multivariate data analyses	108
Discussion	118
Summary	133
Conclusion	139
Recommendations	140
References	141

List of Tables

Title	Page
Review of literature	
Table (1): Relative risks of health problems associated with obesity	8
Materials and Methods	
Table (2: A, B, C): Composition of standard diet	42-43
Results	
Table (3) : Metabolites identified in grapefruit, pomegranate, red cabbage juice extracts via UPLC–PDA–MS in negative ionization mode.	65
Table (4): Food intake, body weight gain, feed efficiency ratio, body mass index, adiposity index and relative liver weight in normal control and different experimental groups	72
Table (5): Serum lipids profile and glucose levels of normal control and different experimental groups	77
Table (6): GC-MS assignments of metabolites identified in rats' serum <i>via</i> GC/MS with silylation	89
Table (7): Metabolites found significantly different among treatment groups as revealed <i>via</i> GC-MS	104
Table (8): GC-MS assignments of metabolites identified in rats' urine <i>via</i> GC-MS post silylation	110
Table (9): Metabolites fold change among groups compared to either control (C) or obese (O) group	117

List of Figures

Title	Page
Review of literature	
Fig. (1): Basic principles of energy balance	10
Fig. (2): Exogenous and endogenous factors that influence	27
the human metabolome	21
Fig. (3): The goal of metabolomics for diet-related disease	37
research	37
Results	
Fig. (4): Base peak chromatogram (BPC) for water extract	
of grapefruit (A), pomegranate (B) and red cabbage	64
(C) analyzed by UPLC-qTOF-(-)ESI-MS.	
Fig. (5): Percentage change in food intake and feed	=-
efficiency ratio in treated groups as compared to	73
normal control group	
Fig. (6): Percentage change in body weight gain and body	7.4
mass index in treated groups as compared to normal	74
control group Fig. (7): Paragraph and shapes in adiposity index in treated	
Fig. (7): Percentage change in adiposity index in treated groups as compared to normal control group	75
Fig. (8): Percentage change in relative liver weight in	
treated groups as compared to normal control group	75
Fig. (9) : Percentage change in triacylglycerols (TAGs) and	
total cholesterol (TC) levels in treated groups as	78
compared to normal control group	70
Fig. (10): Percentage change in HDL-C and LDL-C levels	
in treated groups as compared to normal control group	79
Fig. (11): Percentage change in glucose level in treated	
groups as compared to normal control group	80
Fig. (12): Histopathological section of lumbar white adipose	81
tissue from normal control group	
Fig. (13): Histopathological section of lumbar white adipose	82
tissue from obese group	_
Fig. (14): Histopathological section of lumbar white adipose	82
tissue from drug group	
Fig. (15): Histopathological section of lumbar white adipose	83

Title	Page
tissue of rats from grapefruit group	
Fig. (16): Histopathological section of lumbar white adipose	83
tissue from pomegranate group	0.5
Fig. (17): Histopathological section of lumbar white adipose	84
tissue from red cabbage group	
Fig. (18): Histopathological section of lumbar white adipose	84
tissue from exercise group	<u> </u>
Fig. (19): Histopathological section of lumbar white adipose	85
tissue from mixture group	
Fig. (20): Percentage change of adipocyte diameter in the	
different experimental groups as compared to obese	86
group	
Fig. (21): Representative GC/MS chromatograms of serum	88
derived from normal-control (A) and obese (B) rat.	
Fig. (22): The PCA scores plots of the eight unclassified	93
treatment groups derived from GC-MS.	
Fig. (23): Orthogonal partial least-squares-discriminant analysis (OPLS-DA) score plots obtained from	
modelling serum metabolites in the different rat	95
groups	
Fig. (24): Orthogonal partial least-squares-discriminant	 I
analysis (OPLS-DA) score plots obtained from GC-	0.5
MS data by modeling obese (O) versus healthy	97
control groups (C) against each other	
Fig. (25): OPLS-DA derived from modeling obese rats (O),	00
healthy controls (C) and exercise (E) group.	99
Fig. (26): GC/MS based OPLS-DA analysis of 3 groups	
modelled together including: normal control (C),	101
obese rats (O) and grapefruit (G) group	
Fig. (27): GC/MS based OPLS-DA analysis of 3 groups	1
modelled together including: normal control (C),	102
obese rats (O) and pomegranate (P) group	<u></u>
Fig. (28): A schematic overview of the most predominant	·
altered metabolic pathways and the biochemical	105
linkages among biomarker metabolites detected in	105
serum of obese rats	1
Fig. (29): ROC curve analysis of potential serum biomarker	106

Title	Page
for differentiating the control group from the obese	
group (low levels of biomarkers in obese group)	
Fig. (30): ROC curve analysis of potential serum biomarker	
for differentiating the control group from the obese	107
group (high levels of biomarkers in obese group)	
Fig. (31): Representative GC-MS chromatograms of normal	109
control rat urine (A) and obese rat urine (B)	109
Fig. (32): Orthogonal partial least-squares-discriminant	
analysis (OPLS-DA) score plots obtained from	114
modeling urine metabolites analyzed using GC-MS	
Fig. (33): Orthogonal partial least-squares-discriminant	
analysis (OPLS-DA) score plots derived from modeling	116
metabolites of obese rat group against normal control	110
group analyzed using GC/MS	