

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

(أ) شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠%. To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات المعامعية @ ASUNET

بالرسالة صفحات لم

Use of antisense in vitro for inhibition of hepatitis C virus replication

A thesis Submitted to Chemistry Department Faculty of Science Cairo University

For the degree of Master Of Science (in Biochemistry).

Submitted By

Ahmed Mohamed Fahmy

Researcher Assistant Biomedical Technology Department National Research Center

Supervised by

Prof. Dr. Mostafa K. El Awady Head of Biomedical Technology Dep. Prof. of Molecular Genetics National Research Center

Dr.Amr Saad Mohamed Associate Prof. of Biochemistry **Chemistry Department** Faculty of Science Cairo University

Dr. Mohamed A. El Desouky

Lecturer of Biochemistry Chemistry Department Faculty of Science Cairo University

Faculty of Science Cairo University 2009

Use of antisense *in vitro* for inhibition of hepatitis C virus replication

A thesis Submitted to Chemistry Department Faculty of Science Cairo University

For the degree of Master Of Science (in Biochemistry).

Submitted By

Ahmed Mohamed Fahmy

Supervised by

Dr.Amr Saad Mohamed

Dr. Mohamed A. El Desouky

Prof. Dr. Mostafa K. El Awady

ACKNOWLEDGEMENTS

First and foremost thanks for ALLAH

Several outstanding individuals have contributed to making this journey unforgettable and it is to all of them that I feel deeply indebted:

I would like to express my thanks and gratitude to **Prof. Dr. Mostafa Kamel El-Awady** head of Biomedical Technology Department Genetic Engineering Division, National Research Center for suggesting the point of this thesis, his confidence in allowing me to follow my curiosity, determination, and instincts towards columniation of my research goals. Also, I thank him for his kind supervision continuous support and valuable guidance in all of the theoretical and practical aspects of this work. I am very lucky to have great opportunity to be one of his students.

I would like to express my thanks and gratitude to **Dr. Amr Saad Mohamed** Associate Prof. of Biochemistry, Chemistry Department Faculty of Science Cairo University for his kind supervision, guidance, encouragement and his endless help & support greatly appreciated.

Sincere thanks & gratitude are to **Dr. Mohamed A. El Desouky** lecturer of Biochemistry, Chemistry Department Faculty of Science Cairo University for his keen supervision, revision, guidance and encouragement. His sincere help and endless support greatly appreciated.

I would like to express my thanks and gratitude to **Dr.Samar Sameer Youssef** Assistant Prof. of Biochemistry at Biomedical Technology Department, National Research Center for continuous help and endless support throughout this work. **Dr.Samar** helped me in practical and writing of this thesis. I am also thankful for her generous encouragement despite the many failure science has to offer .

Many thanks are to **Dr.Moataza Omran** Assistant Prof. of Biochemistry at Biomedical Technology Department, National Research Center for her kind assistance and endless support. also I have been lucky to work with a great deal of amazing and talented individuals. I am deeply endebted to **Dr.Sherif Shawky** for his continuous help and kind co-operation and endless support. Many endless thanks to all members in the Biomedical Technology Department who helped me directly or indirectly.

Abstract

Introduction: Although interferon and ribavirin combined therapy is the only approved HCV therapy, this therapy is costly, prolonged, and is associated with significant adverse effects. Furthermore; its outcome is unfortunately poor with genotype 4. Development of alternative therapy for this genotype is of a paramount importance. Inhibitions of HCV gene of antisense phosphorothioate vitro by the use expression in oligodeoxynucleotides (S-ODN) against internal ribosome entry site (IRES) elements were associated with favorable results. Methods: To assess S-ODN activity, IRES domain III derived from nine Egyptian patients infected with genotype 4a were amplified, cloned and sequenced. In addition, IRES domain IV sequences that belongs to another group of patients infected with genotype 4a that were previously performed in our laboratory were obtained from GenBank. Alignment of both domains revealed that domain IV is highly conserved over loop III d which showed less sequence higher efficiency of S-ODN1 conservation. Such conservation suggests (directed against domain IV) than S-ODN2 (directed against loop III d). Effect of mismatched oligonucleotides on intracellular HCV RNA levels was also studied by using S-ODN1 altered sequence (S-ODN1*) after random introduction of a single nucleotide substitution which showed no significant effect on S-ODN1 inhibitory effect on viral replication. The efficiency of S-ODN1 to inhibit viral replication in two different cell types was then investigated using HepG2 cells and PBMCs. Results: The current study have shown that SODN1 was efficiently able to inhibit viral replication in infected HepG2 cells while; in contrast, it failed to inhibit viral replication in PBMCs. Conclusion: The antisense oligonucleotides displayed differential inhibitory effects in different types of HCV permissible cells suggesting that S-ODN1 may inhibit HCV replication via cell specific mechanisms (pathways).

Key words:

HCV, S-ODN, IRES, alignment, HepG2, PBMCs, viral replication

Supervisors

1-

2-

3-

M. SMM

Prof.Dr. Mohamed M. Shoukry
Chairman of Chemistry Department
Faculty of Science- Cairo University

Table of contents

		Pages
1.1 Introduction		1
1.2 Aim of work		4
2. Review of literature		5
2. Hepatitis C virus		5
2.1 Hepatitis C history and relevance		5
2.2 Hepatitis C epidemiology		9
2.2.1 HCV prevalence		9
2.2.2 Modes of transmission		15
2.3 HCV classification, Genetics and		
replication		16
2.3.1 Distribution of HCV genotypes Worldwide		17
2.3.2 Distribution of HCV genotypes in Middle East		22
2.3.3 Viral genome and replication		25
2.3.4 Virus c life cycle		28
2.3.5 HCV replication		39
2.3.6 Extrahepatic replication		50
2.4 Extrahepatic manifestations		54
2.5 Model Systems to Study HCV		56
Proliferation	·	
2.5.1 Animal Models		56
2.5.2 Cell culture systems		60
3. HCV Treatment	•••••	63
3.1 Chronic hepatitis C		63
3.2 Acute hepatitis C		68
3.3 Treatment response		68
3.3.1 Predictors of treatment response		69
3.4 Adverse effects of treatment		69
3.5 Modification of current therapies		73
3.5.1 Amantadine		73
3.5.2 Antidepressants		
3.5.3 Growth factors		
3.6Modulation of host immune responses		
3.6.1 New interferons		. 74
3.6.2 Ribavirin analogues		. 75

3.6.3 Inosine monophosphate		
dehydrogenase (IMPDH) inhibitors		76
3.6.4 Other immunomodulators 3.6.5 Anti-HCV hyperimmune globulin		76
(HCIG)		78
3.6.6 Therapeutic vaccines	**********	79
3.7 Treatments targeting the HCV		
genome		79
3.7.1 Inhibition of RNA replication	*******	79
3.7.2 Post-translational modification	********	80
3.7.3 Inhibition of protein translation	*******	81
4. Materials and Methods	**********	89
4.1 Biological Samples		89
4.2 Structural analysis of IRES domain		
III from local samples		89
4.2.1 Viral RNA Isolation		89
4.2.2 One step RT- PCR Amplification of the HCV 5'NCR		91
4.2.3 PCR product purification		93
4.2.4 Cloning of purified PCR- product		95
4.2.5 Colony PCR		97
4.2.6 Cycle sequencing		95
4.2.7 Purification of cycle sequencing product		102
4.2.8 Multiple sequence alignment of AUG domain		103
4.2.9 Multiple sequence alignment of cloned stem loop IIId	••••••	103
4.3 Testing of SODN inhibitory power in different cell types		103

4.3.1 Total Cellular RNA Isolation form		103
PBMCs 4.3.2 Viral RNA isolation from serum	·	
samples		105
4.3.3 RT-PCR Amplification of HCV		
5'NCR for both cellular and serum		106
viral RNA		106
4.3.4 Genotyping of selected subjects		
samples	**********	110
4.4 In vitro inhibition of HCV replication		
using SODN1 in both infected HepG2	1	110
cell line and PBMCs	•••••	112
4.4.1 Infection of HepG2 Cell Culture		112
with HCV Positive Serum	**********************	112
4.4.2 Addition of Antisense		
Oligonucleotides to HCV Infected		114
HepG2 and PBMCs Cells 4.5 Detection of HCV inhibition of		
replication by S-ODN1		115
4.5.1 Total Cellular RNA Extraction from		
S-ODN1 treated HCV Infected		
HepG2 Cells and PBMCs		115
4.5.2 RT-PCR of HCV RNA Plus and		
Minus Strands	*******	116
5.Results		120
5.1 Structural analysis of IRES stem		
loop IIId from local samples		120
5.1.1 Selection of HCV +VE serum	-	
Samples by nested RT-PCR		120
5.1.2 Purification of PCR products		122
5.1.21 utilication of 1 cit products	••••	
5.3 Cloning of the purified PCR-		
product		124
5.4 Isolation of the Recombinant Plasmid	***************************************	126
5.5 detection of successful ligation	***************************************	126
6. Relation between S-ODN		
sequence specificity and its capacity in		100
arresting virus replication		128

6.1 Selection of suitable S-ODN sequence targeted against a conserved domain to achieve maximum blocking efficiency		128
7. Testing of SODN inhibitory power in		101
different cell types	******************	131
7.1 Selection of patients positive for HCV in serum and PBMCs		131
7.2 HCV genotyping of the selected patients		133
7.3 Inhibition of HCV replication <i>in vitro</i> using SODN1 in HepG2 cells and in PBMCs		135
7.4 Cell specific inhibition of HCV replication by S-ODN1 using sera and PBMCs obtained from 6 local subjects infected with HCV		
genotype 4a		138
7.5 Effect of S-ODN1 sequence		
conservation on its inhibitory effect		141
8. Discussion		143
9.Summary and Conclusion		153
9.References		156

List of figures

Figure			page
no.	Estimated HCV provolence by region		13
1 2	Estimated HCV prevalence by region Age specific prevalence of antibody to		
2	hepatitis c virus by Egypt		14
3	Physical and functional map of	**********	
3	Hepatitis C virus (HCV)		26
4	Model of HCV entry to the hepatocyte		38
4 5	Progress in therapy of hepatitis C		65
<i>5</i>	Main mechanisms of antisense strategy		83
7	pDrive cloning vector map		99
8	Agarose gel electrophoresis of HCV		
O	PCR product		121
9	Agarose gel electrophoresis of purified		
,	PCR product		123
10	White colonies of transformed		
10	QIAGEN EZ competent cells		125
11	Agarose gel electrophoresis of		
11	recombinant plasmid DNA minipreps		127
12	Agarose gel electrophoresis of ligated		
12	PCR products		127
13	Multiple Sequence alignment of AUG		
13	domain using Clastal W program		129
14	Multiple Sequence alignment of AUG		
14	domain sequences using BioEdit		
	sequence alignment editor		129
1.5	Entropy plot for AUG domain	•••••	
15	sequences by BioEdit		129
16	Multiple Sequence alignment of loop	••••••	
10	IIId using Clastal W program		130
17	Multiple Sequence alignment of loop	•••••	
1 /	IIId using BioEdit sequence alignment		130
	editor	•••••••	
18	Entropy plot for loop IIId sequences by		
	BioEdit		130
19(a)	Detection of HCV RNA in patients sera		132
19(b)	Demonstration of HCV RNA in		
(~)	circulating patients PBMCs		132