RESPONSE OF SOME SNAP BEAN CULTIVARS TO SOWING DATES AND GAMMA IRRADIATION

By

AMR MOHAMED MOUNIR FARRAG MOHAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2011

> A thesis submitted in partial fulfillment of The requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

RESPONSE OF SOME SNAP BEAN CULTIVARS TO SOWING DATES AND GAMMA IRRADIATION

By

AMR MOHAMED MOUNIR FARRAG MOHAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2011

This thesis for Ph.D. degree has been approved by:

Dr. Shaban Desuki Abou-Hussien Researcher Prof. of vegetable crops, National Research center Dr. Mohamed Emam Ragab Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University Dr. Ahmed Abou El-Yazied Abd El-Hafize Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University Dr. Ibrahim Ibrahim El-Oksh Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University

Date of Examination: 26 /12 / 2015

RESPONSE OF SOME SNAP BEAN CULTIVARS TO SOWING DATES AND GAMMA IRRADIATION

By

AMR MOHAMED MOUNIR FARRAG MOHAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2011

Under the supervision of:

Dr. Ibrahim Ibrahim El-Oksh

Prof. Emeritus of Vegetable Crops, Department of Horticulture Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Ahmed Abou El-Yazied Abd El-Hafize

Prof. of Vegetable Crops, Department of Horticulture Faculty of Agriculture, Ain Shams University.

Dr. Ibrahim Orabi Ahmed

Researcher Prof. Emeritus of Plant Physiology, Department of Natural Products Research, National Center for Radiation Research and Technology.

ABSTARACT

Amr Mohamed Mounir Farrag: Response of Some Snap Bean Cultivars to Sowing Dates and Gamma Irradiation. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2015.

The effect of three doses of gamma irradiation (0, 20 and 30 Gy) and their effect on three cultivars of snap bean Paulista, Xera and Bronco under different sowing dates i.e. the 1st, 8th and 15th of October was studied in an experimental farm during 2011/2012 and 2012/2013 seasons. The results revealed that the 1st of October scored the highest leaf and stem dry weight at all ages, plant length, leaf number at 30 DAP, leaf and stem fresh weight at 45 and 60 DAP, leaf area, number of branches and leaf area at 60 DAP. On the other hand, the 8th of October led to the highest values of plant length at all ages, leaf and stem fresh weight and leaf dry weight at 30 DAP, leaf area and number of branches at 30 and 45 DAP, stem fresh weight at 45 DAP and leaf number at 30 and 60 DAP. Regarding the effect of cultivars, cv. Bronco gave the highest leaf and stem fresh weight and leaf area at all ages, leaf number at 30 DAP and leaf dry weight at 45 and 60 DAP, whereas cultivar Paulista had the highest leaf and branch number and stem dry weight, also cultivar Xera gave the highest plant length and branch number at 30 DAP and leaf number and stem fresh and dry weight. Concerning gamma irradiation effect, 20 Gy significantly increased all growth parameters except leaf fresh weight at 45 DAP, stem dry weight at 30 DAP, plant length, leaf number and stem dry weight at 30 and 60 DAP, number of branches and leaf area at 60 DAP. On the other hand, 30 Gy produced the highest leaf fresh weight at 30 and 45 DAP, leaf number, number of branches, leaf dry weight and leaf area at 60 DAP. As for chemical constituents, the 1st and 8th of October scored the highest gibberellin and indole acetic acid content, while the 15th of October gave the highest values of chlorophyll reading, total phenols and proline content in the first season. It was found that cultivar Paulista significantly increased chlorophyll reading, total carbohydrate in the second season, while cultivar Xera led to the highest chlorophyll reading and proline content. It was found also that cultivar Bronco scored the highest total phenols in leaves. Regarding the effect of gamma irradiation, 20 Gy significantly increased chlorophyll reading, proline content, gibberellin and indole acetic acid, whereas 30 Gy led to the highest chlorophyll reading, total carbohydrate, total phenols, proline content, indole acetic acid and gibberellin.Concerning yield and its components, the 8th of October gave the highest pod number per plant, plant yield in the second season, local yield class1, exportable yield, total yield and the lowest local yield class 2 per feddan. Cultivar Paulista produced the highest pod length, local yield class1 and the lowest local yield class 2, while cv. Bronco had the highest local yield class 2 and local yield class1, cultivar Xera gave the highest pod length, plant yield, and pod number per plant, exportable yield, total yield and the lowest local yield class 2 per feddan. The 20 Gy of gamma irradiation doses produced the highest pod length and fresh weight, plant yield, and pod number per plant, exportable yield, local yield class 1 and total yield and lowest local yield class 2 per feddan. The 30 Gy of gamma irradiation doses significantly increased pod thickness, pod length, pod fresh and dry weight and lowest local yield class 2 per feddan. Results indicated that the 1st and 15th of October produced the highest fiber percent in green pod, whereas the 15th of October increased total sugars and protein percentage in green pods .As for cultivars, cv. Paulista produced the highest fiber and protein percentage in green pods and cv. Bronco gave the highest percent of total sugars in green pods. Regarding the effect of gamma irradiation, 30 Gy significantly increased total sugars, fiber and protein percentage in green pods.

Key words: Snap bean, cultivars, sowing dates and gamma irradiation.

ACKNOLEDGEMENT

Firstly, I direct my deepest thanks to **ALLAH** who gave me the power and patience to finish this work.

The author whishes to express his great thanks and deep gratitude to **Prof. Dr. Ibrahim Ibrahim El-Oksh**, Emeritus Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for suggesting the current study and his supervision and help during the course of this study and during preparing and reviewing the manuscript.

Deep gratitude and thanks is also due to **Dr. Ahmed Abou El-Yazied Abd El-Hafize**, Professor of Vegetable Crops, Faculty of Agriculture,
Ain Shams University, for his kind supervision, advice, valuable assistance, during the preparation of this thesis.

I would like to thank **Prof. Dr. Ibrahim Orabi Ahmed**, Emeritus Professor of plant physiology in the National Center for Radiation Research and Technology, for his supervision, great support and continued help during the preparation of this work.

I would like also to express my deep thanks to **Dr. Ahmed Abd El-Hamid Zahran** Lecturer of plant physiology in the National Center for Radiation Research and Technology, for his effort and unfailing support and interest during the course of this work.

Thanks are also extended to **the staff members** of the Department of Horticulture, Faculty of Agriculture, Ain Shams University and **the staff members** of the Department of natural products in National Center for Radiation Research and Technology for their encouragement and help during the course of this work.

Finally, deepest gratitude for my Late mother, my father and my wife for their continuous help and encouragement through this work.

CONTENTS

	Page
LIST OF TABLES	iii
LIST OF ABREVIATIONS	viii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Effect of gamma irradiation	4
2.1.1. Vegetative growth characters	4
2.1.2. Pod yield and its components	10
2.1.3. Chemical constituents	12
2.2. Effect of cultivars	15
2.2.1. Vegetative growth characters	15
2.2.2. Pod yield and its components	18
2.2.3. Chemical constituents	22
2.3. Effect of sowing date	25
2.3.1. Vegetative growth characters	25
2.3.2. Pod yield and its components	28
2.3.3. Chemical constituents	34
3. MATERIALS AND METHODS	36
4. RESULTS AND DISCUTION	44
4.1 The laboratory determinations	44
4.2. Vegetative characters	45
4.2.1. Plant length	45
4.2.2. Leaf number	50
4.2.3. Leaf fresh weight	55
4.2.4 .Stem fresh weight	59
4.2.5. Leaf dry weight	64
4.2.6. Stem dry weight	69
4.2.7. Branch number	73
4.2.8 .Leaf area.	79
4.3 .Chemical compositions of leaves.	84
4.3.1. Chlorophyll reading	84

4.3.2. Total carbohydrates	86
4.3.3 .Total soluble phenols	88
4.3.4. Proline	91
4.3-5.Gibberellin	93
4.3-6.Indole acetic acid	95
4.3-7.Absisic acid	97
4.4. Yield and its components	99
4.4.1. Pod number per plant	99
4.4.2. Pod fresh weigh	99
4.4.3. Plant yield	102
4.4.4. Total yield	104
4.4.5. Exportable yield	106
4.4.6. Local yield class1	108
4.4.7. Local yield class2	108
4.4.8. Pod length	111
4.4.9. Pod thickness	113
4.4.10. Pod dry weight	115
4.5.Chemical composition of green pods	117
4.5.1.Total sugars	117
4.5.2.Protein percentage	119
4.5.3.Fiber percentage	121
5. SUMMARY	124
6. REFRENCES	134
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Chemical and physical analysis of the experimental soil of	
	Nasr city, Cairo governorate during 2011/2012 and	
	2012/2013 seasons	36
2	Average minimum and maximum temperatures (Co) and	
	relative humidity (%) in Cairo during autumn and winter	
	seasons of 2011/2012 and 2012/2013 seasons	38
3	Effect of gamma irradiation on standard germination test	
	(%), Mean germination rate (MGR) and Electrical	
	conductivity (EC) of different cultivars of snap bean seeds	
	during 2011 / 2012 season	45
4	Effect of sowing dates, cultivars and gamma irradiation on	
	plant length (cm) of snap bean plants at 30 days after	
	sowing during 2011/2012 and 2012/2013 seasons	46
5	Effect of sowing dates, cultivars and gamma irradiation on	
	plant length (cm) of snap bean plants at 45 days after	
	sowing during 2011/2012 and 2012/2013 seasons	47
6	Effect of sowing dates, cultivars and gamma irradiation on	
	plant length (cm) of snap bean plants at 60 days after	
	sowing during 2011/2012 and 2012/2013 seasons	48
7	Effect of sowing dates, cultivars and gamma irradiation on	
	leaf number of snap bean plants at 30 days after sowing	
0	during 2011/2012 and 2012/2013 seasons	51
8	Effect of sowing dates, cultivars and gamma irradiation on	
	leaf number of snap bean plants at 45 days after sowing	52
9	during 2011/2012 and 2012/2013 seasons Effect of sowing dates, cultivars and gamma irradiation on	32
7	leaf number of snap bean plants at 60 days after sowing	
	during 2011/2012 and 2012/2013 seasons	53
10	Effect of sowing dates, cultivars and gamma irradiation	33
-0	on leaf fresh weight (g) of snap bean plants at 30 days after	56

	sowing during 2011/2012 and 2012/2013 seasons	
11	Effect of sowing dates, cultivars and gamma irradiation	
	on leaf fresh weight (g) of snap bean plants at 45 days	
	after sowing during 2011/2012 and 2012/2013 seasons	57
12	Effect of sowing dates, cultivars and gamma irradiation on	
	leaf fresh weight (g) of snap bean plants at 60 days after	
	sowing during 2011/2012 and 2012/2013 seasons	58
13	Effect of sowing dates, cultivars and gamma irradiation on	
	stem fresh weight (g) of snap bean plants at 30 days after	
	sowing during 2011/2012 and 2012/2013 seasons	61
14	Effect of sowing dates, cultivars and gamma irradiation on	
	stem fresh weight (g) of snap bean plants at 45 days after	
	sowing during 2011/2012 and 2012/2013 seasons	62
15	Effect of sowing dates, cultivars and gamma irradiation on	02
13	stem fresh weight (g) of snap bean plants at 60 days after	
	sowing during 2011/2012 and 2012/2013 seasons	63
16	Effect of sowing dates, cultivars and gamma irradiation	U.
10	on leaf dry weight (g) of snap bean plants at 30 days after	
	sowing during 2011/2012 and 2012/2013 seasons	65
17	Effect of sowing dates, cultivars and gamma irradiation	0.
1 /	on leaf dry weight (g) of snap bean plants at 45 days after	
	sowing during 2011/2012 and 2012/2013 seasons	66
18	Effect of sowing dates, cultivars and gamma irradiation on	oc
10	leaf dry weight (g) of snap bean plants at 60 days after	
	sowing during 2011/2012 and 2012/2013 seasons	67
19	Effect of sowing dates, cultivars and gamma irradiation on	0,
	stem dry weight (g) of snap bean plants at 30 days after	
	sowing during 2011/2012 and 2012/2013 seasons	70
20	Effect of sowing dates, cultivars and gamma irradiation on	
	stem dry weight (g) of snap bean plants at 45 days after	
	sowing during 2011/2012 and 2012/2013 seasons	71
21	Effect of sowing dates, cultivars and gamma irradiation on	
	stem dry weight (g) of snap bean plants at 60 days after	72

	sowing during 2011/2012 and 2012/2013 seasons	
22	Effect of sowing dates, cultivars and gamma irradiation on	
	branch number of snap bean plants at 30 days after sowing	
	during 2011 / 2012 and 2012/ 2013 seasons	74
23	Effect of sowing dates, cultivars and gamma irradiation on	
	branch number of snap bean plants at 45 days after sowing	
	during 2011 / 2012 and 2012/ 2013 seasons	75
24	Effect of sowing dates, cultivars and gamma irradiation on	
	branch number of snap bean plants at 60 days after sowing	
	during 2011 / 2012 and 2012/ 2013 seasons	76
25	Effect of sowing dates, cultivars and gamma irradiation	
	on leaf area (cm ²) of snap bean plants at 30 days after	
	sowing during 2011/2012 and 2012/2013 seasons	80
26	Effect of sowing dates, cultivars and gamma irradiation	
	on leaf area (cm ²) of snap bean plants at 45 days after	
	sowing during 2011/ 2012 and 2012/2013 seasons	81
27	Effect of sowing dates, cultivars and gamma irradiation	
	on leaf area (cm ²) of snap bean plants at 60 days after	
	sowing during 2011/2012 and 2012/2013 seasons	82
28	Effect of sowing dates, cultivars and gamma irradiation on	
	chlorophyll reading (SPAD) in leaves of snap bean plants	
	during 2011/2012 and 2012/2013 seasons	85
29	Effect of sowing dates, cultivars and gamma irradiation on	
	total carbohydrate percent on dry weight basis in leaves of	
	snap bean plants during 2011/2012 and 2012/2013 seasons.	87
30	Effect of sowing dates, cultivars and gamma irradiation on	
	total soluble phenols percent on fresh weight basis in leaves	
	of snap bean plants during 2011/2012 and 2012/2013	
	seasons	89
31	Effect of sowing dates, cultivars and gamma irradiation on	
	proline content (mg / 100 g D.W) in leaves of snap bean	
	plants during 2011/2012 and 2012/2013 seasons	92

32	Effect of sowing dates, cultivars and gamma irradiation on	
	gibbrellin (μg / 100 gm F.W) in leaves of snap bean plants	
	during 2012/2013 season	94
33	Effect of sowing dates, cultivars and gamma irradiation on	
	indole acetic acid (μg / 100 gm F.W) in leaves of snap	
	bean plants during 2012/2013 season	96
34	Effect of sowing dates, cultivars and gamma irradiation on	
	absisic acid (μg / 100 gm F.W) in leaves of snap bean	
	plants during 2012/2013 season	98
35	Effect of sowing dates, cultivars and gamma irradiation on	
	pod number per plant of snap bean plants during 2011/2012	
	and 2012/2013 seasons	100
36	Effect of sowing dates, cultivars and gamma irradiation on	
	pod fresh weight (g) of snap bean plants during 2011/2012	
	and 2012/2013 seasons	101
37	Effect of sowing dates, cultivars and gamma irradiation on	
	plant yield (g) of snap bean plants during 2011/2012 and	
	2012/2013 seasons	103
38	Effect of sowing dates, cultivars and gamma irradiation on	
	total yield (Kg / feddan) of snap bean plants during	
	2011/2012 and 2012/2013seasons	105
39	Effect of sowing dates, cultivars and gamma irradiation	
	on exportable yield (Kg / feddan) of snap bean plants	
	during 2011/2012 and 2012/2013 seasons	107
40	Effect of sowing dates, cultivars and gamma irradiation on	
	local yield class1 (Kg / feddan) of snap bean plants during	
	2011/2012 and 2012/2013 seasons	109
41	Effect of sowing dates, cultivars and gamma irradiation on	
	local yield class2 (Kg / feddan) of snap bean plants during	
	2011/2012 and 2012/2013 seasons	110

42	Effect of sowing dates, cultivars and gamma irradiation on	
	pod length (cm) of snap bean plants during 2011/2012 and	
	2012/2013 seasons	112
43	Effect of sowing dates, cultivars and gamma irradiation	
	on pod thickness (mm) of snap bean plants during	
	2011/2012 and 2012/2013 seasons	114
44	Effect of sowing dates, cultivars and gamma irradiation	
	on pod dry weight (g) of snap bean plants during	
	2011/2012 and 2012/2013 seasons	116
45	Effect of sowing dates, cultivars and gamma irradiation on	
	total sugars percent on dry weight basis in green pods of	
	snap bean plants during 2011/2012 and 2012/2013 seasons.	118
46	Effect of sowing dates, cultivars and gamma irradiation on	
	protein percent on dry weight basis in green pods of snap	
	bean plants during 2011/2012 and 2012/2013 seasons	120
47	Effect of sowing dates, cultivars and gamma irradiation on	
	fiber percent on dry weight basis in green pods of snap	
	bean plants during 2011/2012 and 2012/2013 seasons	122

LIST OF ABBREVIATIONS

Abbreviation Meaning of abbreviation

A.O.A.C. Association of official analytical chemists

Cm Centimeter,

cv., cvs Cultivar, Cultivars

Fed Feddan
ha hectar
g Gram
Kg Kilogram
M Meter

 $\begin{array}{ccc} cm^2 & Square \ centimeter \\ m^2 & Square \ meter \\ mm & milimeter \end{array}$

DAP Day after planting Kr, Krad Kilo rad = 1000 rad

R, r Roentegn sec Second

K Gy, K Gray Kilo Gray = 1000 Gray

CO⁶⁰ Cobalt 60
Cs 137 Cesium 137
M1 First generation
M2 Second generation

Gamma γ h hour % percent Co Celsius maximum max min minimum temp temperature agri Agriculture N.O. number milliter ml

ISTA International Seed Testing Association

1. INTRODUCTION

Snap bean (*Phaseolus vulgaris* L.) is one of the most important legumes of family Fabaceae worldwide for direct human consumption. The crop is consumed principally for its dry (mature) beans, shell beans (seeds at physiological maturity) and green pods. When consumed as seed, beans constitute an important source of dietary protein (22% of seed weight). Annual production of dry beans is around 15 million tonnes and average yield is 700 kg ha⁻¹, although yield in certain countries reach 2000-3000 kg ha⁻¹.

Annual production of green beans is around 4.5 million tones, with the largest production around the Mediterranean and the USA. The top producers of snap bean are China, Indonesia, India, Turkey, Thailand and Egypt at the 6th rank with 263, 080 tonnes (FAO 2013).In Egypt snap bean is a major vegetable export crop second to potato in terms of foreign exchange earnings.

The main factor which affects the productivity of high quality exportable yield is the good choice of the suitable cultivars because some cultivars are suitable to the European markets than others. Pod quality characters are the major factor, which affect the percentage of exportable yield. Many investigators reported that the vegetative growth, total and exportable yield as well as pod quality of snap bean are greatly affected by genotype of the varieties (Nassar ,1986; Abou El –Hassan *et al.* ,1993; Mohamed ,1997; Amer *et al.* ,2002a).

Lately a lot of cultivars are introduced in the local market, and they differ in their growth habit, sowing location, yield amount, pod characters and quality. Moreover, **Amer et al.** (2002b) concluded that the difference in pod yield of bean varieties might be attributed to the different genetic potentiality of every variety.

Also it is well known that common bean is environmentally sensitive to environmental stresses that may occur in the field