Human Myeloid Inhibitory C-Lectin (hMICL): A Novel Acute Myeloid Leukemia Marker

Thesis
Submitted for Partial Fulfillment of Master Degree in
Clinical and Chemical Pathology

By **Amira Mohamed Mohamed Mohy El-Din** MB BCh

Misr University For Science And Technology

Supervised by **Professor / Tahany Ali El Kerdani**

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Doctor / Deena Samir Mohamed

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Doctor / Eman Zaghloul Kandel

Lecturer of Clinical and Chemical Pathology National Cancer Institute, Cairo University

> Faculty of Medicine Ain Shams University

> > 2014

Acknowledgment

First of all, great thanks to "ALLAH".

My sincere gratitude to **Prof. Dr. Tahany Ali El Kerdani,** Professor of Clinical and Chemical Patology,
Faculty of Medicine, Ain Shams University, for her sincere
encouragement and valuable criticism. It was a great
honour for me to work under her supervision.

I am deeply indebted to **Dr. Deena Samir Mohamed**, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her kind assistance to follow closely every step in this work, , her most generous help, valuable advice and precious comments.

I would like to express deep appreciation to **Dr**. **Eman Zaghloul Kandel**, Lecturer of Clinical and Chemical Pathology, National Cancer Institute for her valuable time, help, guidance and her considerable effort throughout this work.

Lastly, but not the least, I would like to record my greatest thanks and gratitude to my family for their actual help and support, and to everyone who helped me throughout this work.

سي- ليكتين المثبط النقوي البشري (hMICL): دلالة جديدة لإبيضاض الدم النقوي الحاد

رسالة توطئه للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية و الكيميائية

مقدمة من الطبيبة/أميرة محمد محمد محي الدين بكالوريوس الطب والجراحة كلية الطب- جامعة مصر للعلوم و التكنولوجيا

تحت اشراف

الأستاذ الدكتور/ تهائي على الكردائي أستاذ الباثولوجيا الإكلينيكية و الكيميائية كلية الطب- جامعة عين شمس

الدكتور/ دينا سمير محمد أستاذ مساعد الباثولوجيا الإكلينيكية و الكيميائية كلية الطب- جامعة عين شمس

الدكتور/ ايمان زغلول قنديل مدرس الباثولوجيا الإكلينيكية و الكيميائية معهد الأورام القومي- جامعة القاهرة

> كلية الطب- جامعة عين شمس 2014

Table of Contents			
Titles	Page		
List of Tables	ii		
List of Figures			
List of Abbreviations	vi		
Introduction	1		
Aim of Work	3		
Review of Literature			
Chapter 1:			
Acute Myeloid Leukemia			
A. Definition	4		
B. Epidimiology	4		
C. Etiology	5		
D. Leukemogenesis	5 7		
E. Classification	9		
F. Diagnosis	13		
G. Prognostic Factors	28		
H. Treatment	29		
I. Minimal Residual Disease	33		
Chapter 2:			
Human Myeloid Inhibitory C- Lectin			
A. Nomenclature	34		
B. Genetics	35		
C. Structure	37		
D. Expression	40		
E. Expression In Other Diseases	41		
F. Physiological Functions	42		
G. Methods Of Assay	43		
Subjects and Methods	49		
Results	59		
Discussion	75		
Summary and Conclusion			
Recommendations	86		
References			
Arabic Summary			
-			

List of Tables			
Table	Title	Page	
1	Conditions predisposing the development of acute myelogenous leukemia	6	
2	Most frequent genetic abnormalities in AML and related oncogenes	8	
3	Morphologic (FAB) classification of AML	10	
4	The WHO classification of AML and related precursor neoplasms (2008)	12	
5	Panel of MoAbs to differentiate AML and ALL	21	
6	Immunologic phenotypes of AML	21	
7	Acute leukemias of ambiguous lineage according to the WHO classification of tumors of hematopoietic and lymphoid tissues	23	
8	Cytogenetic and molecular classification for risk grouping in acute myeloid leukemia	25	
9	Genes whose mutations or changes in expression occur recurrently in cytogenetically normal AML and have clinical significance.	26	
10	Prognostic factors in acute myeloid leukemia	28	
11	The monoclonal antibodies used in diagnosis of Acute Leukemia	53	
12	Demographic and clinicopathologic characteristics of studied AML and ALL patients and healthy control subjects	64	
13	Comparative study of hMICL percentage expression among AML, ALL and control subjects	65	
14	Comparative study of hMICL MFI among AML, ALL and control subjects	65	
15	Relationship of hMICL percentage expression to demographic and clinicopathologic characteristics of AML patients	66	

16	Relationship of hMICL MFI expression to	67
10	<u> </u>	07
	demo-graphic and clinicopathologic	
	characteristics of AML patients	
17	Raw data of studied AML patient	73
18	Raw data of studied ALL patients	74
19	Raw data of studied normal control subjects	74

List of Figures			
Fig	Title	Page	
1	Pyoderma gangrenosum	15	
2	Leukemia cutis manifesting as subcutaneous nodules	15	
3	BM Aspirate smears of different FAB subtypes of AML	19	
4	The peroxidase reaction	20	
5	M5 AML (AMoL), non-specific esterase (NSE) stain, bone marrow aspirate smear, 1000x	20	
6	C-type lectin receptors encoded by the natural killer gene complex (NKC)	36	
7	Schematic view of part of human chromosome 12p13. 1 including MICL (<i>black arrow</i>) and several closely related genes	37	
8	hMICL structure	37	
9	Genomic structure of MICL aligned with the encoded polypeptide and three detected isoforms	39	
10	hMICL isoforms structure	39	
11	Flowcytometry	46	
12	Percentage expression and MFI of hMCIL in studied AML, ALL and control subjects	68	
13	Percentage expression and MFI in CD34 ⁻ versus CD34 ⁺ blasts in studied AML patients	68	
14	Percentage expression and MFI of hMICL in relation to studied AML FAB subtypes	69	
15	Percentage expression and MFI of hMICL in relation to studied AML cytogenetic subtypes	69	
16	Percentage expression and MFI of hMICL in relation to FLT-3 gene status	70	
17	ROC curve for diagnostic cut off of hMICL % among studied AML patients. The diagnostic cut off was set at 9.5%.	70	

18	ROC curve for diagnostic cut off of hMICL	70
	MIF among studied AML patients. The	
	diagnostic cut off was set at 2.3	
19	hMICL expression in AML cases	71
20	hMICL expression in a normal bone marrow	
	sample	
21	Example hMICL expression in AML and ALL	72
	cases	

List of Abbreviations

ALL Acute Lymphoblastic Leukemia

AML Acute Myeloid Leukemia

APL Acute Promyelocytic Leukemia

ATRA All-Trans-Retinoic Acid

BAALC Brain And Acute Leukemia Cytoplasmic

Gene

BM Bone Marrow

BSA Bovine Serum Albumin

CAE Chloroacetate Esterase CBC Complete Blood Count

CCR7 Chemokine (C-C Motif) Receptor 7

CD Cluster of Differentiation

CEBPA CCAAT/Enhancer Binding Protein

CLEC C-Type Lectin-Like Receptor

CLEC12A C-Type Lectin Domain Family 12 MemberA

CLL-1
CLR
C-Type Lectin-Like Molecule-1
CLR
C-Type Lectin-Like Receptor
CML
Chronic Myeloid Leukemia
CNS
Central Nervous System
CR
Complete Remission

CTLDs C-Type Lectin-Like Domains

Cy5 Cyanin 5

DC Dendritic Cells

DCAL-2 Dendritic Cell-Associated Lectin 2

DIC Disseminated Intravascular Coagulopathy EDTA Ethylene Diamine Tetra-Acetic Acid

ELISA Enzyme Linked Immunosorbent Assay

EM Electron Microscopy

ERG Erythroblastosis Virus E26 Oncogene-Like

(Avian)

FAB French-American-British

FAV Favorable

FCM Flowcytometry

Fig Figure

FISH Fluorescence In Situ Hybridization

FITC Fluorescein Isothiocyanate FLT-3 Fms-Related Tyrosine Kinase3

Hb Hemoglobin

HLA Human leukocyte antigen

hMICL Human Myeloid Inhibitory C-Lectin

HS Highly Significant IP Immunophenotyping

ITIM Immunotyrosine-Based Inhibition Motif

KLRL1 Killer Lectin Like Receptor 1

LAIPs Leukemia-Associated Immunophenotypes

LM Light Microscopy

LOX-1 Low Density Lipoprotein-1 MFI Mean Fluorescence Intensity

MLL Myeloid Lymphoid Or Mixed Lineage

Leukemia

MoAb Monoclonal Antibody

MPAL Mixed Phenotype Acute Leukemias

MPO Myeloperoxidase

MRD Minimal Residual Disease

NA Sodium

NEC Nonerythroid Cells NKC Natural Killer Complex

NKCL NK-Like C-Type Lectin-Like Receptors

NPM-1 Nucleophosmin-1
NS Non Significant
NSE Nonspecific Esterase

p Probability Of Chance PAS Periodic Acid Schiff PB Peripheral Blood

PBS Phosphate Buffered Saline

PE Phycoerythrin

PLT Platelets

PT Prothrombin Time

PTT Partial Thrompoblastin Time

ROC Receiver Operating Characteristic

RT-PCR	Reverse Transcription Polymerase Chain
_	Reaction
S	Significant
SBB	Sudan Black B
SCT	Stem Cell Transplantation
SHIP	Src Homology-2 Domain-Containing
эпіг	Inositol Phosphatase
SHP	Src Homology-2 Domain-Containing
ЗПР	Tyrosine Phosphatase
SPSS	Statistical Package For Social Science
TdT	Terminal Deoxynucleotidyl Transferase
TLC	Total Leukocytic Count
TSG	Tumor Suppressor Genes
WHO	World Health Organization

viii

Introduction

Acute myeloid leukemia (AML) is the most common acute leukemia affecting adults and its incidence increases with age. The prognosis of AML is poor, primarily because of the relapses occurring on conventional chemotherapy regimens. The overall 5-year leukemia-free survival rate is only 25-35% and even lower in patients over 60 years old (Zhao et al., 2010). Therefore, alternative strategies are needed to complement the currently used chemotherapy treatment protocols (Bakker et al., 2004).

In the absence of leukemia specific markers, the distinction between leukemic and normal immature cells relies on the expression of antigen combinations defining leukemia-associated immunophenotypes (LAIPs), which are absent or extremely infrequent in normal bone marrow (Al-Mawali et al., 2008). However, evidence in the literature has outlined that these LAIPs are very different from patient to patient and they are not necessarily stable over the course of the disease (Voskova et al., 2004). Consequently, there is still a need for the identification of new antigens contributing to diagnostic and prognostic information, improving relapse detection, identification and ideally eradication of leukemic stem cells through antibody mediated therapy (Larsen et al., 2012).

The Human Myeloid Inhibitory C-Lectin (hMICL) also known as Human C-type lectin-like molecule-1 (CLL-1), or C-type lectin domain family 12 member A (CLEC12A), is a type II transmembrane glycoprotein and member of the large family of C-type lectin-like receptors involved in immune regulation (**Zhao et al., 2010**). The hMICL is a pan-myeloid antigen that is absent on normal uncommitted primitive CD34⁺ CD38⁻ or CD34⁺ CD33⁻ stem cells; which aids the discrimination between normal and leukemic stem cells, as well as introduces hMICL as a promising therapeutic target for eradication of antigen-bearing leukemic cells and the subsequent re-establishment of normal hematopoiesis through the remaining normal stem cells (**Bakker et al., 2004**).

Aim of Work

The aim of this work is to determine the diagnostic impact and the applicability of the Human Myeloid Inhibitory C-Lectin (hMICL) in routine clinical flowcytometry for the diagnosis of Acute Myeloid Leukemia (AML).

Chapter 1

ACUTE MYELOID LEUKEMIA

A) DEFINITION:

Acute myeloid leukemia (AML, also known as acute myelogenous leukemia and, less commonly, as acute nonlymphocytic leukemia) consists of a group of relatively well-defined hematopoietic neoplasms involving precursor myeloid line cells committed to the of cellular development (i.e., those giving rise to granulocytic, or megakaryocytic monocytic, erythroid, elements) (Schiffer et al., 2010).

B) EPIDIMIOLOGY:

AML is a highly malignant neoplasm responsible for a large number of cancer-related deaths (**Deschler and Lübbert**, 2006).

- 1) *Incidence:* AML counts for 15 to 20 percent of the acute leukemias in children and 80 percent of acute leukemias in adults (**Lichtman and Liesveld, 2006**).
- 2) Age: The AML is the predominant form of leukemia during the neonatal period, but it represents < 15% of cases of leukemia in children under 10 years and 25 to 35% between ages 10 and 15 years. While in adults it represents