Diathermy versus Scalpel in transverse abdominal incision in women undergoing repeated cesarean section in Ain Shams Maternity Hospital

Thesis Submitted in partial fulfillment for Master Degree in Obstetrics and Gynecology

Вy

Mohamed Mansour Abdel Aziz

M.B.B.Ch. 2006, Faculty of Medicine, Zagazig University Resident of Obstetrics and Gynecology, Al-Ahrar Hospital-Zagazig city

Supervisors

Prof. Dr. Magdi Mahmoud Abdel Gawad

Professor of Obstetrics and Gynecology, Faculty of Medicine Ain Shams University

Dr. Ahmed El-Ssayed Hassan Elbohoty

Lecturer of Obstetrics and Gynecology Faculty of Medicine

Ain Shams University

Faculty of Medicine Ain Shams Universtiy Course your

First of all, all gratitude is due to god almighty for blessing this work until it has reached its end as a part of his generous help, throughout my life.

No word would be sufficient to express my deepest gratitude and appreciation for the great effort of Prof. Dr. Magdi Mahmoud Abdel Gawad Professor of obstetrics gynecology, faculty of medicine, Ain Shams university, for suggesting and planning this work as well as his supervision and illuminating criticism in reading the manuscript. To him I will always be thankful and to him I shall forever be grateful.

It is also my pleasure to express my profound gratitude to Dr. Ahmed El-Ssayed Hassan Elbohoty Lecturer of obstetrics and gynecology, Faculty of Medicine, Ain Shams University, for his much valuable efforts and guidance during the course of the work presented in this thesis. Sincere thanks to him.

I am grateful to Dr. Mohamed Mahmoud Abdel Aleem Lecturer of obstetrics and gynecology, faculty of medicine, Ain Shams University, for his kind co-operation in my study.

> Mohamed Mansour Zagazig

> Date: March /2014

Dedication

To My family

Contents

List of abbreviations	I
List of figures	II
Introduction	1
Aims and objectives	3
Review of literature	4
Electrosurgery	4
Cesarean section	21
Patients and methods	35
Results	52
Discussion	64
Summary	71
Conclusion	71
Recommendation	73
References	75
Arabic summary	

List of abbreviations

AC : Alternating Current

ASUMH : Ain Shams University Maternal Hospital

BMI : Body Mass Index

C-Delivery : Cesarean Delivery

CDMR : Cesarean Delivery On Maternal Request

CDR : Cesarean Delivery Rate

COAG : Coagulation

CRF : Case Record Form

CS : Cesarean Section

CTG : Cardiotocography

ERC : Ethics and Research Committee

ESU : Electrosurgical Unit

FBS : Fetal Blood Sample

HIV : Human immunodeficiency Virus

IUGR : Intra Uterine Growth Retradation

MF : Medium Frequency

PET : Pre-eclamptic toxemia

RCA : Royal College of Anaesthetists

RCOG : Royal College of Obstetricians and Gynaecologists

RCT : Randomized Controlled Trial

RF : Radiofrequency

VBAC : Vaginal Birth After Cesarean

List of Figures

Figure (1): Applications of different current frequencies	4
Figure (2): Hydraulic analogy to explain Ohm's law	6
Figure (3): Isolated generator circuit	7
Figure (4): Electromagnetic spectrum	8
Figure (5): Monopolar versus bipolar instrumentation	9
Figure (6): Relationship of instrument settings to voltage and current Interruption	10
Figure (7): Generator output modes	11
Figure (8): Use of continuous current "pure cut" mode	13
Figure (9): Use of interrupted current "coag" mode resulting in fulguration	14
Figure (10): Electrode tissue contact results in desiccation	15
Figure (11): Obliteration of blood vessel lumen by "vessel-sealing" instrument	17
Figure (12): Off-site burn caused by poorly adherent grounding pad	18
Figure (13): Reduction of capacitive coupling injury risk	20
Figure (14): The difference between an "adaptive" generator and one that does not sense the impedance and adjust accordingly	22
Figure(15): Abdominal incisions	28
Figure (16): Types of Uterine incisions	30
Figure (17): Martine 400	49
Figure (18): Mettalic ruller	49

Figure (19): Weighning scale	50
Figure (20): Stopwatch	50
Figure (21): Handle of scalpel	51
Figure (22): Blade of scalpel	51
Figure (23): Flow diagram	52
Figure (24): Mean age in the two study groups	54
Figure (25): Body weight in the two study groups	54
Figure (26): Height in two study groups	55
Figure (27): BMI in two study groups	55
Figure (28): Gestational age in two study groups	56
Figure (29): Box plot showing skin to peritoneum time	57
Figure (30): Box plot showing blood loss in the two study groups	58
Figure (31): Box plot showing wound thickness in the two study groups	58
Figure(32) Box plot showing number of analgesic doses in the two study groups	60
Figure (33): Box plot showing time for wound healing in the two study groups	60
Figure (34): Incidence of wound infection in the two study groups	61
Figure (35): Incidence of wound ecchymosis in the two study groups	61
Figure (36): Incidence of wound hematoma in the two study groups	62
Figure (37): Incidence of wound seroma in the two study groups	62
Figure (38): Incidence of wound dehiscence in the two study groups	63

List of Tables

Table (1): Tissue temperture versus surgical effect	12
Table (2): Classification of urgency of ceaserean section	24
Table (3): Indication of ceaserean section	25
Table (4): Patients' characteristics	53
Table (5): Operative data	57
Table (6): Post operative data	59
Table (7): Different studies comparison	69

Diathermy versus Scalpel in transverse abdominal incision in women undergoing repeated cesarean section in Ain Shams Maternity Hospital

Protocol of Thesis Submitted in partial fulfillment for Master Degree In Obstetrics and Gynecology

Ву

Mohamed Mansour Abdel Aziz

M.B.B.Ch. 2006, Faculty of Medicine, Zagazig University Resident of Obstetrics and Gynecology, Al-Ahrar Hospital-Zagazig City

Supervisors

Prof. Dr. Magdi Mahmoud Abdel Gawad

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. Ahmed El-Ssayed Hassan Elbohoty

Lecturer of Obstetrics and Gynecology
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams Universtiy 2012

Introduction

Ascalpel is an extremely sharp knife used for surgery and anatomical dissectaion (Nataraj., 2010).

The electrosurgery often referred to as surgical diathermy (Johnson et al., 1997). Surgical diathermy was introduced at the beginning of the 20 th century to obviate the inherent disadvantages of steel scalpel, i.e. lack of hemostasis; indistinct tissue planes; increased operative time; use of foreign material (ligature) in the wound, leading to infection risk; possibility of accidental injury in the operations theater (Kumar et al., 2011).

Basic scalpel design has remained almost the same but there have been substantial improvements in the electrosurgical instruments (**Duxbury et al., 2003**), being haemostatic and convenient (**Sheikh., 2004**).

With increased incidence of blood transmitted disease such as Hepatitis B, Hepatitis C and Human immunodeficiency Virus (HIV) (Arsalan et al., 2011). The risk of transmission to both doctor and patient is quite significan, Thereby avoiding and possibly even completely replacing the scalpel from operative fields looks an attractive option (Chrysos et al., 2005).

Electrocautery is often available in all operation theatres however it has been used less frequently because of fear of tissue damage leading to more postoperative pain, impaired wound healing, and hypertrophic scaring (**Dixon and Watkin.**, 1990).

There are variable tissue effects such as cutting (also called vaporization), fulguration (also called superficial coagulation or spray coagulation), and desiccation (also called deep coagulation) (Redwine., 1992).

Many studies are conducted to compare electrocautery incision with scalpel incision over skin and many of them showed electrocautery incision is better than scalpel incision in terms of time taken for incision, lesser pain, better wound healing and little blood loss (**Kerans et al., 2001 and Pollinger et al., 2003**)

Cesarean section is the commonest major operation performed on women worldwide (**Hofmeyr et al., 2008**) Operative techniques used for caesarean section vary and some of these techniques have been evaluated through randomised trials (**Mathai and Hofmeyr., 2007**). However there is no study comparing the scalpel incision versus electrocautery in cesarean section, so it was plausible to study this comparison.

1. Protocol outlines

1.1. Title:

Diathermy versus scalpel in transverse abdominal incision in women undergoing repeated cesarean section in Ain Shams maternity hospital.

1.2. Study site (setting):

Ain Shams University Maternity Hospital (ASUMH) where there are approximately (130) women undergoing transverse abdominal incisions.

1.3. Study phase:

This study will be a Randomized Controlled Trial (RCT)

2. Study objectives

2.1. Primary objectives:

The primary objective is to compare the volume of blood loss during the interval from the beginning of skin incision to the end of peritoneal incision by using scalpel or electrosurgery for the creation of transverse abdominal incisions.

2.2. Secondary objectives:

- Wound complication (wounds complicated by any of the following:
 - bursing oedema (accumulation of fluid in tissue).
 - seroma (swelling due to accumulation of serum).
 - hematoma (swelling due to an accumulation of blood), infection, and dehiscence (open of the incision) and skin burn ecchymosis.
- Wound incision time (the interval from the beginning of skin incision to the end of peritoneal incision, recorded by the anaesthesiologic or the surgical team).
- · Postoperative pain.
- · Time to wound healing.

3. Study design

Randomized Controlled Trials (RCTs) that compare the wound related blood loss and the rates of wound complications in surgical incisions made with a scalpel and incisions made using electrosurgery.

3.1. Population:

Allocation of the study pregnant women will be based on computerized randomization SPPS version 15.01 four windows :SPPS Inc,chicago,IL,2001 to avoid selection bias.

The patients and the nursing personnel will be kept blinded to incision methods used.

The women with previous one cesarean section will be divided into two groups .

Group 'A' which include 60 women will be manage by scalpel incision with disposable blade will be used to incise skin till peritoneum.

In group 'B' which include 60 women will be manage by scalpel incision with disposable blade to incise skin and the deeper tissues will be made by diathermy using stanadard diathermy pen electrode.

3.2. Surgical techniques:

Technique of diathermy incisions.

Diathermy incisions will be done using a small flat blade pen electrode, set on cutting mode and delivering a 120 watt (max) sinusoidal current. Electrosurgical cutting is performed without

pressure or mechanical displacement. The skin blood vessels are usually small and hemostasis is usually satisfactory after the application of pressure. 'Bleeders' were controlled by using diathermy, on coagulating mode, and applied to a hemostat on the vessel to avoid skin necrosis and blistering.

If wounds needed to be extended, they were incised using the blade point only, sweeping in an outward direction through dermal and epidermal layer.

Technique of scalpel incision.

Incisions made by the scalpel was by the traditional method, with proper hemostasis by application of pressure to skin blood vessels and by ligating the subcutaneous bleeders.

Supplies and accountability:

The diathermy apparatus and stainsless steel scalpels will be provided by main investigator (not indulged in patient selection or admission into the study) and left in independent site far from usual use.

3.3. Study entry and duration:

3.3.1. Recruitment and randomization:

During the pre-selection phase (whether in emergency room or after admission into hospital), exclusion and inclusion criteria will be applied. Suitable women will be invited to participate in the study then a signed and informed consent will be obtained from them. When the patient's consent is obtained, they are to be included into the study.