

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Effect Of Soy Flour, Packaging Material And Conditions On The Quality Characteristics Of Chicken Frankfurters During Refrigerated Storage

By

Entsar Nour El Din Mohamed Awad Allah.

B. Sc. Food Science and Technology
Faculity Of Agriculture, Cairo University, 1992.

Thesis

Submitted in partial fulfillment of the requirements for the degree of master in science (M. Sc.)

In

Food Science And Technology

To

Food Science and Technology Department Faculty Of Agriculture, Cairo University

2002

B 71.0

Significant of the string of t

الایاری الایاری عاله کارد

صورة البقرة ٣٢

Approval Sheet

Effect Of Soy Flour, Packaging Materials And Condition On The Quality Characteristics Of Chicken Frankfurters During Refrigerated storage

Entsar Nour El Din Mohamed Under the supervision of

Prof. Dr. Abd El- Rahman, M. Khalaf-Allah Prof. of Food Science and Technology, Food Science and Technology Dept. Faculty of Agriculture, Cairo University.

Dr.Ahmed, T.El Akel

Assoc. prof. of Food Science and Technology, Food Science and Technology Dept. Faculty of Agriculture, Cairo University.

Dr.Samier, M.Rabih

Assoc. prof. of Food Technology Research Institute. Agriculture research center, Giza

Approved by:

A.M. Khalef Allah pur mi Prof. Dr.

Prof. Dr.

Prof. Dr.

Prof. Dr. A.T. Flake

Date 16/6/2002

Table of contents

1	INTRODUCTION	1
2	REVIEW OF LITERATURE	5
	2.1 Chemical and physical properties of poultry meat	5
	2.2 Chemical composition and functional properties of soy protein	6
	2.3 Frankfurter prepared with meat	
	2.4 Quality attributes of poultry frankfurter	
	2.5 Properties of the packaging materials	14
	2.5.1 Polyamide / polyethylene laminate	14
	2.5.2 Polyester / Aluminum foil / polyethylene	17
	2.5.2.1 Polyester (PET)	17
	2.5.2.2 Aluminum foil (AL)	18
	2.5.2.3 Polyethylene (PE)	19
	2.6 Effect of packaging materials and conditions on the quality of –	•
	meat products during storage	21
	2.6.1 Moisture content	21
	2.6.2 pH value	23
	2.6.3 Thiobarbituric acid values TAB	24
	2.6.4 Water holding capacity (WHC)	27
	2.6.5 Cooking loss	28
	2.6.6 Organoleptic properties	28
	2.6.6.1 Texture	28
	2.6.6.2 Color	29
	2.6.6.3 Flavor	31
	2.6.7 Microbiological properties of meat	32
	2.7 Effect of packaging condition on shelf-life of meat product	36
3	MATERIALS AND METHODS	39
	3.1 Materials	39
	3.2 Methods	40
	3.2.1 Preparation packages	40
	3.2.2.2 Packaging tests	40
	3.2.2.1 Thickness lest	40
	3.2.2.2 Elongation lest	40
	3.2.2.3 Permeability test	41
	3.2.2.3.1 Oxygen, Nitrogen and Carbon dioxide for measuring permeability	41
	3.2.2.3.2 Water vapor permeability	41
	3.2.3 Preparation of sample	42
	3.2.4 Methods of packaging	43
	3.2.5 Gases packaging mechanism	43
	3.3 Methods of analysis	44
	3.3.1 Chemical analysis	44
	3.3.1.1 Moisture content	44
	3.3.1.2 Protein content	44

		3.3.1.3	1	otal lipio	d			44
		3.3.1.4						44
		3.3.1.5	, p	Н				44
		3.3.1.6	5 7	hiobarb	ituric ac	cid (T	BA)	45
		3.2.2	Phys	ical ana	llysis .			45
		3.3.2.1					y	45
		3.3.2.2						46
		3.3.2.3						46
		3.3.3	Micr	obiolog	gical E	xam	ination	47
		3.3.3.	1 .	Total aer	obic ba	cteria	d count	47
		3.3.3.2	2 .	Anaerobi	ic bacte	ria		48
		3.3.3.	3	Yeast an	d mold			48
		3.3.4	Sens	ory eva	luatio	n		48
		3.3.5	Stati	stical a	nalysi	s		48
4	R	ESULTS						
•	4.1	Evalu	ation	of th	e Pac	kagi	ing Materials	49
		4.1.1	Phys	sical an	d mec	hanio	cal properties	50
		4.1.2	Wat	er vapo	r and	gas p	permeability	50
		4.1.3						53
	4.2	Chen	nical	comp	ositio	n, q	uality attributes and microbial aspects of	
		the C	hick	en Fra	nkfur	ters		53
		4.2.1					furters	53
		4.2.2	Pacl				d and stored frankfurters	56
		4.2.2	.1					56
		4.2.2	.2					60
		4.2.2	.3				value	63
		4.2.2	.5				ity	67
		4.2.2	.6				tics of the cooked chicken frankfurter	
			4.2.2.6		•	-	ed frankfurters	71
			4.2.2.6	5.2 F	_		frigerated and stored frankfurters	
				4.2.2.6.2			ng losses	73
				4.2.2.6.			nt change in diameter	77
				4.2.2.6.			nt change in length	80
		4.2.2	2.7	Microb			n of the Chicken Frankfurters	83
				4.2.2.7.			-prepared chicken frankfurters	
				4.2.2.7.	2	Packa	ged, refrigerated and stored chicken frankfurters	
				4	4.2.2.7.	2.1	Total count	
					4.2.2.7.	2.2	Anaerobic bacterial count	
					4.2.2.7.		Yeast and mold count	
		4.2.2	2.8	Sensory			of the cooked chicken frankfurters	
				4.2.2.8			-prepared frankfurter	
				4.2.2.8			aged, refrigerated and stored frankfurters	
					1228	2.1	Color	99

		4.2.2.8.2.2	Odor	102					
		4.2.2.8.2.3	Taste	105					
		4.2.2.8.2.4	Texture	108					
	4.2.2.9	4.2.2.9 Shelf life of chicken frankfurters with and without soy flour in different							
		packaging materials	s and modified atmosphere	111					
	4.2.2.10	Simple correlation	among measured quality attributes	115					
5	SUMMARY AND CONCLUSION								
6	REFERENCES								
7	APPENDIX								

ACKNOWLEDGEMENT

I would like to express my deep thanks to **professor Dr. Abd El Rahman**M. Khalaf-Allah, Professor of food science and technology faculty of agriculture, Cairo university, for his supervision, valuable suggestions, unfaling encouragement, constructive criticism and continous help throughout the course of this investigation.

Also, I wish to express my thanks to **Dr. Ahmed T. Al Akel**, assoc. professor of food science and tecnology, faculty of agriclture, Cairo univeristy, for his kind superivion, continous guidance and encouragement through out the progress of this work.

Grateful acknowledgement should be also extended to **Dr. Sameir M.**Assoc. professor of the food Technology Research Institute. Agriculture research center, Giza for his guidance, surpervision, advice and constructive criticism during the whole course of this study.

Many thanks are also extended to all the staff members of Food technology Dept. Faculty of Agriclture, Cairo university and Food Technology Research Institute, Agricultural research center, Giza for their support and assistance during the accomplishment of this work.

Introduction

1- Introduction

Protein content in soybeans is exceptionally high at 35 -38%. Its quality is equal to that of meat and milk products. Soy protein isolates are a highly digestible source of amino acids. Amino acids are the building blocks of protein, essential for human growth and maintenance . Of the 20 amino acids human require, 11 are produced by our bodies. The remaining nine amino acids must come from the foods we eat. Soy protein provides all nine amino acids, making it a complete protein. Isoflavones are components of soybeans that are known to help prevent breast cancer and other estrogen responsive cancers. In addition, ingestion of these compounds may substitute for hormone (estrogen) replacement therapy in postmenopausal women at as low a dose as 40-50 mg per day. They help to prevent heart attacks and stroke by "thinning" the blood. Moreover , they may prevent heart or slow the growth of prostate cancer growth in men and block the growth of blood vessels in turmous (i.e. they are antiantiogenesis factors); and, by acting as antioxidants help to prevent DNA damage leading to mutation. Isoflavones resemble estrogens in structure, competing strongly with true estrogens for estrogen receptor sites (Anon 1999).

In recent years, much attention has been given to introduce the production of meat from chicken due to their ability to adapt themselves in most areas of the world, their low economic value per unit. Their short generation time as it could produce economic amounts of meat in just eight weeks in addition to the high regard of their nutritional value (George and Moutney, 1976 and Barbut et al., 1984).

Poultry industry in Egypt faced with large numbers of spent laying hens which are usually difficult to be marketed at a

reasonable return. Therefor, new uses for such tough chickens meat must be found through further processing with this aim in view, several companies are exploring the feasibility of chicken meat in some of the same ways that the red meats are used, in sausage or emulsion products. Especially, chicken meat has a higher water holding capacity than red meats. Therefore, it was found to be more suitable for processing sausages and some other products as reported by Kako and Ando (1966).

The use of various plant protein in meat products as functional ingredients has been long under study (Bird,1974). Soy and other plant proteins have been used widely as meat extenders in recent years (Maga, 1973; Pearson, 1973 and Goltry et al., 1976) This popularity can be attributed to lower cost per unit protein (compared to meat) ready availability throughout the world and throughout all seasons ., nutritional adequacy and unique functional Properties (Wilding, 1971).

The use of soy protein in lean ground meat might be of significant value in improving meat products quality, increased cooking yield as well as lowering cholesterol levels in the final products (Berry and Leddy, 1984 and Liu et al., 1991). Besides cholesterol content of raw or cooked ground meat products were found to decrease as textured soy protein was incorporated in such products (Rhee et al., 1987). Many new packaging materials or combination of materials have been used in food packaging in recent years. The main driving force has been to increased the barrier properties of the packaging and thereby the protection of food products with more complex materials.

A single polymer is often unable to provide all the properties necessary to create suitable barrier characteristics. This has generated a need for multilayer structure and techniques such as lamination and coaxtrusion is simply competive to lamination and modified atmosphere