

Properties of Concrete Incorporating Locally Produced Portland Limestone Cement

A Thesis

Submitted in Partial Fulfillment for the Requirements
of the Degree of Master of Science
in Civil Engineering

By **Eng. Mohamed Abd Elazeem Allam**

B.Sc. 2009 Civil Engineering Ain Shams University

Supervisors

Dr. Fatma Ahmed Shaker

Associate Professor,
Structural Engineering Department
Faculty of Engineering
Ain-Shams University

Dr. Ahmed Rashad Mohamed

Assistant Professor,
Structural Engineering Department
Faculty of Engineering
Ain-Shams University

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in civil engineering (Structural Engineering).

The work included in this thesis has been carried out by the author at properties and testing of material lab, the Department of Structural Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Name : Mohamed Abd Elazeem Allam

Signature :

Date : / /

APPROVAL SHEET

Thesis : Master of Science in Civil Engineering (Structural) **Student Name** : Mostafa Nour Eldin Mohamed AbdAllah : Properties of concrete incorporating locally produced **Thesis Title** Portland limestone cement **Examiners Committee: Signature** Prof. Dr. Gouda Mohamed Ghanem Professor of Material Properties, Structural Engineering Department Faculty of Engineering - Helwan University Prof. Dr. Elsayed Abd Elraouf Nasr Professor of Steel Structures, Structural Engineering Department Faculty of Engineering - Ain Shams University Dr. Fatma Ahmed Shaker Associate Professor inStructural Engineering Department Faculty of Engineering - Ain Shams University

Date: 07/03/2015

ACKNOWLEDGMENTS

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest gratitude and appreciation to my supervisor, **Dr. Fatma Ahmed Shaker**, for her invaluable guidance, support and encouragement.

I also greatly appreciate the help, guidance and support provided by **Dr. Ahmed Rashad Mohamed** throughout all stages of research.

The experimental work was carried out at the properties and material laboratory of structural department of Ain Shams university. The help of the laboratory staff in developing work is greatly appreciated.

Finally, I would like to express my appreciation to my father, my beloved mother and the whole family for lots of support.

TABLE OF CONTENTS

Examiners Committee	i
Statement	ii
Acknowledgments	iii
Table of Contents	iv
Abstract	vii
List of Figures	ix
List of Tables	xiii
List of Symbols	XV
Chapter 1 Introduction	
1.1 General	1
1.2 Objectives	2
1.3 Scope and Contents	3
1.4 Thesis Outlines	3
Chapter 2 Literature Review	
2.1 Introduction	5
2.2 Benefits of Using Blended Cements	5
2.3 History of the Use of Limestone Cements	8
2.4 Portland Limestone Cement Constituents	11
2.4.1 Portland Cement Clinker	11
2.4.2 Limestone additions	12
2.4.3 Calcium sulfates	12
2.4.4 Other minor additions	12
2.5 Manufacture of Limestone Cement	13
2.5.1 Intergrinding and separate grinding (blending)	13
2.5.2 Benefits of intergrinding limestone cement	14
2.5.3 Effect of grinding processes on the properties of	15
limestone cement	
2.6 Properties of Limestone Cement	22
2.7 Limestone cement reactions	24
2.7.1 Hydration	24
2.7.2 Heat of hydration	27
2.8 Concrete Using Limestone Additions	
2.8.1 Fresh Concrete Properties	30
2.8.1.1 Workability	30
2.8.1.2 Bleeding	33
2.8.1.3 Setting Time	36
2.8.2 Hardened Concrete Properties	38

	Table of Contents
2.8.2.1 Compressive Strength	38
2.8.2.2 Tensile and Flexural Strengths	43
2.8.2.3 Volume Stability	44
2.8.3 Durability	47
2.8.3.1 Permeability	47
2.8.3.2 Sulphate Resistance	58
2.8.3.3 Thaumasite Formation	63
2.8.3.4 Abrasion Resistance	66
2.8.3.5 Carbonation	67
2.8.3.6 Freeze/Thaw and Deicer salt scaling	69
2.8.3.7 Chloride Penetration Resistance	71
Chapter 3 Experimental Work	
3.1 General	77
3.2 Objective of Research Plan	77
3.3 Experimental Program	77
3.4 Characteristics of the Used Materials	78
3.4.1 Fine Aggregate	79
3.4.2 Coarse Aggregate	79
3.4.3 Cement	80
3.4.4 Water	82
3.5 Mix Proportions	82
3.6 Specimen Preparation	83
3.6.1 Mixing	83
3.6.2 Casting	84
3.6.3 Curing	85
3.7 Testing Procedure	
3.7.1 Fresh Concrete Tests	86
3.7.1.1 Slump Test	86
3.7.1.2 Heat of Hydration Test	86
3.7.1.3 Setting Time Test	87
3.7.2 Hardened Concrete Tests	89
3.7.2.1 Compressive Strength Test	89
3.7.2.2 Tensile Splitting Strength Test	89
3.7.2.3 Flexural Strength Test	90
3.7.2.4 Bond Strength Test (Pull out Test)	91
3.7.3 Durability Tests	93
3.7.3.1 Permeability Test	93
3.7.3.2 Sulphate Resistance Test	96
3.7.3.3 Rapid Chloride Penetration Test	96
3.7.3.4 Abrasion Resistance Test	100

	Table of Contents
3.7.4 Concrete Microstructure Examination	101
3.7.4.1 Scanning electronic microscopy	101
3.7.4.2 Specimen preparation	101
Chapter 4 Results and Discussion	
4.1 General	102
4.2 Fresh Concrete Properties	102
4.2.1 Slump	102
4.2.2 Heat of Hydration	104
4.2.3 Setting Time	106
4.3 Hardened Concrete Properties	109
4.3.1 Compressive Strength	109
4.3.2 Indirect Tension	114
4.3.3 Bond Strength	116
4.3.4 Flexural Strength	118
4.4 Durability	119
4.4.1 Permeability	119
4.4.2 Sulfate Resistance	121
4.5.3 Chloride Penetration	124
4.4.4 Abrasion Resistance	127
4.4.5 Concrete Microstructure	129
Chapter 5: Summary, Conclusions and Recommendations	
5.1 Summary	131
5.2 Conclusions	131
5.3 Recommendations	133
5.4 Recommendations for Further Studies	133
References	134

ABSTRACT

The use of limestone as a component of Portland cement is now common practice worldwide. Reducing the amount of cement clinker with limestone additions is considered a highly efficient way of saving natural resources, saving energy and lowering the carbon dioxide footprint of the cement and concrete industries on the environment.

Many specifications permit the use of limestone additions in the cement. The Egyptian Standard Specifications E.S. 4756-1 (2007) and the European Standard EN 197-1 (2000) identify two types of Portland limestone cement containing 6-20% limestone (CEM II/A-L) and 21-35% limestone (CEM II/B-L). Nevertheless, the Egyptian Standards prohibit the use of limestone cement in structural concrete. Thus the aim of this research is to evaluate the properties of the limestone cement concrete compared to those of ordinary concrete. To achieve this goal a review of previous studies and an experimental investigation were carried out and were illustrated in details throughout the different chapters of this thesis.

The literature review included the previous investigations and researches on the subjects concerning the environmental benefits of using limestone cements, Portland limestone cement constituents, the manufacture of limestone cement, the properties of limestone cement and the properties of concrete using limestone additions.

The experimental study compared between twelve concrete mixtures using four types of Portland cement, CEM I 42.5N, CEM II/A-L, CEM I 32.5, and CEM II/B-L with cement contents 300, 350 and 400 kg/m³. Tests were performed to evaluate the fresh properties (workability, setting time,

and heat of hydration), hardened properties (compressive, tensile, flexural and bond strengths), and durability properties (permeability, sulphate resistance, and abrasion resistance). Also a limited microstructural investigation was performed on the concrete.

This investigation concluded that concrete made with CEM II (A-L) accomplished competitive results with OPC concrete. Furthermore, all Portland limestone cement concretes achieved lower water permeability compared to ordinary Portland cement concretes.

Keywords: Ordinary Portland cement (OPC), Portland limestone cement(PLC), water permeability, sulphate resistance, rapid chloride penetration.

LIST OF FIGURES

		Page
2.1	Carbon dioxide emissions for 3 German cement plants	7
2.2	CEN data on types of cement produced in Europe	10
2.3	Grindability of clinker and limestone (A)	14
2.4	Grindability of clinker and limestone (B)	15
2.5	Particle size distributions of interground cement mixtures	16
2.6	Particle size distributions a) cement b) limestone	17
2.7	Coarse limestone and clinker particles retained over 32 micron	
	sieves	19
2.8	Limestone coated steel balls at the mill	22
2.9	Degree of hydration for limestone concretes under various	
	curing conditions	27
2.10	Schematic of hydrating materials with time for limestone	27
2.11	mixtures Heat of hydration Curve	27 29
2.11	Energy release of limestone cements	29
2.12	Consistency of limestone cement pastes	32
2.13	•	36
	Bleeding rate vs. specific surface area	
2.15	Water demand and setting of limestone cement pastes	38
2.16	Achieved strength using PLC (8% limestone)	39
2.17	Effect of replacing cement with 15% to 45% limestone on the	11
2.18	strength of concrete produced at a range of w/cm values Effect of surface (Blaine) on the strength of concrete(w/cm =	41
2.10	0.49 to 0.51) produced with PLC and PC from the same cement	
	plant	42
2.19	Strength data for concretes produced with different cements	
	from the same plant	44
2.20	(a) Autogenous, (b) unrestrained, and (c) restrained shrinkage (ASTM C1581) for cements with no limestone, 5% and 10%	
	limestone	47
2.21	The results of the oxygen permeability	50
2.22	Outline of the device used for the measurement of gas	
	permeability	53

		List of Figures
3.1	Program of research work	78
3.2	The materials mixing process	84
3.3	The specimen curing process	85
3.4	Slump test apparatus	86
3.5	Temperature sensors and data-logger	87
3.6	Setting time test apparatus and specimens	88
3.7	Indirect splitting tensile test	90
3.8	Flexural strength test	91
3.9	Determination of flexural strength	91
3.10	Bond strength test	92
3.11	Schematic diagram of the test setup	94
3.12	Schematic diagram of the test apparatus	94
3.13	DIN 1048 test apparatus	95
3.14	Pressure gage during testing	95
3.15	Specimen after testing	95
3.16	Schematic diagram of the RCPT cell	97
3.17	Vacuum saturation process in the RCPT	98
3.18	RCPT saturation apparatus	98
3.19	RCPT apparatus during testing specimen	99
3.20	Abrasion resistance test apparatus	100
4.1	Slump test results for different concrete mixes	103
4.2	Heat of hydration curve (cement content 300kg/m ³)	105
4.3	Heat of hydration curve (cement content 350kg/m ³)	105
4.4	Heat of hydration curve (cement content 400kg/m^3)	106
4.5	Penetration resistance vs time (cement content 300 kg/m ³)	107
4.6	Penetration resistance vs time (cement content 350 kg/m ³)	108
4.7	Penetration resistance vs time (cement content 400 kg/m ³)	108
4.8	Compressive strength development (c.content 300kg/m ³)	110
4.9	Compressive strength development (c.content 350kg/m ³)	110
4.10	Compressive strength development (c.content 400kg/m ³)	111
4.11	Compressive strength vs cement content (1 Day)	111
4.12	Compressive strength vs cement content (3 Days)	112
4.13	Compressive strength vs cement content (7 Days)	112
4.14	Compressive strength vs cement content (28 Days)	113
4.15	Compressive strength vs cement content (90 Days)	113
4.16	Tensile strength results for all Mixtures	115
4.17	Bond strength results for all mixtures	117
4 18	Flexural strength results for all mixtures	119

	<u>l</u>	List of Figures
4.19	Water penetration depth for all mixtures	120
4.20	Compressive strength loss percentage for all concrete mixes	122
4.21	Weight loss percentage for all concrete mixes	123
4.22	Electrical current curve for cement content 300 Kg/m ³	124
4.23	Electrical current curve for cement content 350 Kg/m ³	125
4.24	Electrical current curve for cement content 400 Kg/m ³	125
4.25	RCPT charge passed for all concrete mixes	126
4.26	Abrasion loss weight percentage for all concrete mixes	128
4.27	SEM photograph of concrete using CEM I 42.5	129
4.28	SEM photograph of concrete using CEM II (A-L)	129

LIST OF TABLES

		Page
2.1	Estimated annual reduction in energy usage and emissions resulting from use of 10% or 15% Limestone in blended cement.	8
2.2	Types of cements with limestone additions, EN 197-1	9
2.3	Effect of grinding parameters on compressive strength	18
2.4	Variation of Blaine and fineness values of control cement by	
	grinding time	20
2.5	Variation of Blaine and fineness values of blended cements	20
2.6	Blaine and fineness values at mill discharge	20
2.7	Physical properties of cements prepared by the addition of re-	
	grinded coarse	21
2.8	Effect of limestone replacement ratio on physical and mechanical	
	properties	23
2.9	Water: cement ratio to achieve 60-mm slump	33
2.10	Bleeding of fresh concrete, kg bleed water/m3 concrete	35
2.11	Average bleeding characteristics for concretes with and without	
	5% Limestone in cement	36
2.12	Strength of concrete produced with PLC from Italian cement	
	plants	42
2.13	Concrete mixture proportions and test results for concrete	
	Produced with PC and PLC	43
2.14	Cement ingredients	44
2.15	Creep and shrinkage results for concrete with $w/cm = 0.60$ after	
	90 days	46
2.16	Permeability test results for concretes produced with PLC	49
2.17	Water absorption (UNI Standard 7699*) of concretes made with	
	cements with or without 20% Limestone	51
2.18	Characteristics of the tested cements	52
2.19	Gas permeability, water permeability, sorptivity, and porosity of	
	the tested samples	56
2.20	Sulphate resistance of cement with Limestone replacements	59
2.21	Sulpahte resistance of Limestone mixtures	61
3.1	Fine aggregate characteristics	79
3.2	Sieve analysis for fine aggregate	79
3.3	Coarse aggregate characteristics	80

		List of Tables
3.4	Sieve analysis for coarse aggregate	80
3.5	Physical and mechanical properties of cement	81
3.6	Chemical and Mineralogical Compositions of all cement type	s 81
3.7	Chemical analysis of water	82
3.8	Mix proportions of selected concrete mixes	83
3.9	Specimen dimensions for conducted tests	85
3.10	Chloride ion penetrability based on charge passed	100
4.1	Slump test results for different concrete Mixes	103
4.2	Heat of evolution results for different concrete mixes	104
4.3	Setting time test results for different concrete Mixes	107
4.4	Compressive strength test results for different concrete mixes	109
4.5	Tensile strength test results for different concrete mixes	115
4.6	Bond strength test results for different concrete mixes	117
4.7	Flexural strength test results for different concrete mixes	118
4.8	Water penetration depth results for different concrete mixes	120
4.9	Sulphate resistance results for different concrete mixes	122
4.10	RCPT results for different concrete mixes	126