

ثبيكة المعلومات الجامعية

TEN TONE TONE STORY

تبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيل

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار في درجة حرارة من 15 - 20 منوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

شبكة المعلومات الجامعية

ثبكة المعلومات الجامعية

MENOUFIA UNIVERSITY FACULTY OF ELECTRONIC ENGINEERING MENOUF

OPERATION OF INDUSTERIAL ROBOT USING FUZZY LOGIC

A THESIS
Submitted for M. Sc. Degree
in
Automatic Control System

. !

į

By

MAGDY GAMAL MOHAMMED EL-GHATWARY

B. Sc. AUTOMATIC CONTROL AND MEASUREMENTS MENOUFIA UNIVERSITY, 1993.

Approved by

PROF. M. F. HASAN

(Mehmoud Fehmy)
Faculty of Engineering.
Helwan University

PROF. M. M. SHARAF

(M. Sharaf)

Faculty of Electronic Eng. Menoufia University

PROF. E. L. EL MADBOLY

Faculty of Electronic Eng. Menoufia University

2001

MENOUFIA UNIVERSITY FACULTY OF ELECTRONIC ENGINEERING MENOUF

OPERATION OF INDUSTERIAL ROBOT USING FUZZY LOGIC

A THESIS
Submitted for M. Sc. Degree
in
Automatic Control System

By

MAGDY GAMAL MOHAMMED EL-GHATWARY

B. Sc. AUTOMATIC CONTROL AND MEASUREMENTS MENOUFIA UNIVERSITY, 1993.

Supervised by

PROF. M. M. SHARAF

(M.Sharaf)
Faculty of Electronic Eng.
Menoufia University

Dr. A. S. IBRAHIM

(A-S. $\Gamma b \sim$)
Faculty of Electronic Eng.

Faculty of Electronic Eng Menoufia University

Dr. H. A. SHOHLA

(H.Shola)

Faculty of Electronic Eng. Menoufia University

2001

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude and indebtedness to

GOD, The Most Merciful

Second, I am greatly honored that this research was under the supervision of :

- 1- Prof. Dr. M. M. sharaf, Professor of control, Faculty of Electronic Engineering, Menoufia university.
- 2- **Dr. A. S. Ibrahim,** Assistant professor in control, Faculty of Electronic Engineering, Menoufia university.

I'd like to express my greatest appreciation to both of them for their generous support and heartfelt encouragement. They associated so much to this research that every single page in this dissertation has benefited a lot from their insight and constructive criticism. Therefor, I value their expertise, clear thinking, and supportiveness through this research.

3- Dr. H. A. Shohla, Dr. in control, Faculty of Electronic Engineering, Menoufia university.

I wish to express special thanks to **Dr. I. Shosha** for his help to me.

I wish to express special thanks to all staff in Department of Automatic Control, Faculty of electronic engineering, Menoufia university.

Finally, I take the change to thank my father, my mother, my wife, my brothers and my sisters for their constant inspiration, Love, patience and encouragement during the research.

The Author

Magdy El-Ghatwary

2001

ABSTRACT

In Recent years, fuzzy control has grown in popularity, its use has been proposed in applications that extend beyond those which it is sought to replace human operators. Fuzzy control is now often considered for applications in which operators have never been used, e.g. servomechanism. In such human applications, it is the facility of fuzzy systems to act as function approximates. However, the issue arises of how to design nonlinear fuzzy control laws. Many fuzzy controllers have been constructed, instead of systematically designed, case by case using the trial-and-error method guided by designers experience on fuzzy control. This approach may be adequate for simple problems. However, for more complex systems such as industrial robot there is an urgent need for formal design methods of fuzzy controllers. Fuzzy model reference adaptive control and other adaptive fuzzy control approaches seek to address this issue. The main advantage of the FMRAC is that it implements an adjustable nonlinear mapping between inputs and outputs. Despite the many advantages of the fuzzy model reference adaptive control (FMRAC) algorithm, several drawbacks do exist: The FMRAC design procedure tends to be very

ad hoc, and the development of linguistically expressed fuzzy inverse model is difficult for complex physical systems. In this thesis basic ideas from fuzzy logic and conventional control theory are employed to systematically design a FMRAC for industrial robot. A fuzzy inverse model is designed using numerical input-output data of the process. An adaptive control algorithm is used in setting up the scaling factors of primary fuzzy controller.

The adaptation mechanism performs the function of modifying the centers of consequent membership functions of primary fuzzy controller so that the closed-loop system behaves like the reference model. The proposed procedure eliminates the tedious and time consuming trial-and-error efforts required presently in constructing model reference fuzzy controllers.

ABBREVIATIONS

MRAC Model Reference Adaptive Control

FLC Fuzzy Logic Controller

FMRAC Fuzzy Model Reference Adaptive Control

FIM Fuzzy Inverse Model

DFC Direct Fuzzy Controller

SOC Self-Organized Controller

SISO Single Input Single Output

MISO Multi Input Single Output

PI Proportional integral controller

PD Proportional derivative controller

PID Proportional integral derivative controller

List of symbols

^AP Position vector defined along the coordinate system {A} P(t)

Position vector defined along cartesian coordinate system

AR_B Rotation matrix representing the orientation of the body in

coordinate system {B} relative to coordinate system {A}

X₁ Vector representing the end-effector position and orientation

in cartesian Coordinates

 $\theta(t)$ Position of end-effector in Cartesian coordinate

τ_g Gravitation torque

n Number of robot joints

noi Measurement noise

F₂(t) Force generated due to auxiliary signal

 $F_3(t)$ Force due to payload acceleration

s Complex frequency

Lo Load disturbance

	•
e (kT)	Error between the actual and desired displacement
$\Theta(t)$	Deviation of joint angles from their nominal values at the P ₁
T(t)	Deviation of joint torques from their nominal values at the P ₁
Θr	Desired incremental angle vector
θ_r	Desired joint angle vector
θ ,	Desired velocity
θ	Desired acceleration
θ.	Velocity of the end-effector
Λ (θ)	Vector representing the forward kinematics
$J(\theta)$	Jacobean matrix of the manipulator
$M(\theta)$	Symmetric positive definite inertia matrix
$N(\theta, \theta')$	Coriolis and centrifugal torque
$G(\dot{\theta})$	Gravitational load vector
$H(\theta)$	Friction torque vector
g	Gravitational acceleration vector
$J'(\theta)$	Transpose of the Jacobean matrix
X	Universe of discourse of variable x
Y	Universe of discourse of variable y
X	Element of X
F , A_i , B_i , C_i ,	Fuzzy sets for $i = 1,2,,n$
D_i , G_i	Fuzzy sets for $i = 1,2,,n$
' μ	Membership degree
y_r	Desired process output
у	Actual process output
ce (kT)	Change of error
u	Control signal
Δυ	Change of control signal
K_{P}	Proportional gain coefficient

K_d	Differential gain coefficient
$\mathbf{k_i}$	Integral gain coefficient
W(s)	Transfer function of plant
Q(s)	Inverse model of the plant
p_1	Operating point
U_{fb}	Feed back control signal
Un	Feed-forward control signal
U_{ax}	Auxiliary control signal
U	Control signal
m	Mass of payload
A, B, C	nxn matrices
A*, B*, C*	nxn matrices whose elements are highly complex non linear
	functions of θ , θ and m
ζ	Damping ratio
ω_n	Natural frequency
Q_1	Symmetric positive definite constant matrix
W_p , W_v	Weighting matrices
x_1, x_2	Inputs of the controller
K_V	Velocity gain constant
$\mathbf{k}_{\mathrm{pro}}$	Process gain
R(t)	Weighted error vector
Z(t)	Error states of the Robot
$Z_{m}(t)$	Error states of the reference model
C^{j}_{v}	Center of the j th membership function of the variable v.
r_v	Range of variable v
T	Sampling period
$y_e(kT)$	Error between model reference output and plant output
$y_{ce}(kT)$	Deviation of $y_e(kT)$
	·

D_{ic}	Membership function of error for DFC
D_{ice}	Membership function for change of error for DFC
D_{iu}	Membership function for control signal for DFC
$\chi_i(kT)$	Strength of firing of the rule i. for DFC
C_{in}	Centroid of the consequent fuzzy set Diu for DFC
y _m (kt)	Reference model output
ge	Scaling factor for error in DFC
gce	Scaling factor for change of error in DFC
g_{u}	Scaling factor for control signal in DFC
g _{ye}	Scaling factor for error in FIM of the plant
g_{yce}	Scaling factor for change of error in FIM of the plant
$g_{\Delta u}$	Scaling factor for deviation in control signal(output of FIM)
Δu*	centroid of consequent fuzzy set Ciu for FIM
σ	Positive constant in the range $0.1 < \sigma < 1$
G_{ie}	Membership function of error in FIM
G_{ice}	Membership function for change of error in FIM
G_{iu}	Membership function for control signal in FIM
d	Distance between the membership functions
Ψ	Parameter that quantifies the speed of iteration
T_i	Integral time
T_d	Derivative time
$\tau_T(t)$	Total torque due to payload

Time duration

CONTENTS

CHAPTER 1 INTRODUCTION 1-1 Organization of the thesis. **CHAPTER** 2 ROBOT MODELING 2-1 Introduction 6 2-2 Some Important topics about Robotics. 6 2-3 Dynamic equation for manipulator plus-payload. 10 **CHAPTER** 3 **FUZZY LOGIC CONTROL SYSTEM** 3-1 Introduction 15 3-2 Basic Concepts of Fuzzy Set Theory and Fuzzy Logic. 15 3-3 Construction of Fuzzy Logic Control System. 19 3-4 Adaptive Fuzzy Control. 33 3-5 Conclusions. 40 CHAPTER CONVENTIONAL AND ADAPTIVE CONTROLLER DESIGN FOR ROBOT MANIPULATOR 4-1 Introduction 42 4-2 The Basic Algorithm for PID Controller 42 4-3 Design Conventional Controller using Pole Placement Method45 4-4 Adaptive control design for robot manipulator 46 4-5 Results 56

93

4-6 Conclusions

CHAPTER

FUZZY RULE BASE GENERATION AND FU	JZZY MODEL	
REFERENCE ADAPTIVE CONTROL		
5-1 Introduction.		
5-2 Generating Fuzzy Rules from Numerical Data.		
5-3 Fuzzy Model Reference Adaptive Co	ontrol. 102	
5-4 Results.	110	
5-5 Conclusions.	132	
CHAPTER 6		
CONCLUTIONS AND SUGGESTIONS FOR I	FUTURE	
RESEARCH		
6-1 Conclusions.	134	
6-2 Suggestions for future research.	135	
REFFERENCE	136	
LIST OF PUBLISHED PAPERS BASED ON T	HIS WORK 139	

139