

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

Behavioral Modeling of Mechanomyogram Signals Detection and Decomposition System

By

Hisham Gamal Mohamed Daoud

A Dissertation

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering, Communications and Electronics Branch

Under the Supervision of

Prof. Dr. Hani Fikry Ragai

Prof. Dr. Hassan El Shahaly

Dept. of Electronics & Communications, Faculty of Engineering, Ain Shams University Dept. of Rheumatology & Rehabilitation, Faculty of Medicine, Suez Canal University

AinShams University Faculty of Engineering Electronics and Communications Engineering Department

Examiners Committee

Name: Hisham Gamal Mohamed Daoud

Thesis:Behavioral Modeling of MechanomyogramSignals Detection and Decomposition System

Degree: Doctor of Philosophy in Electrical Engineering

Title, Name, AffiliationSignature

Prof. Dr. AhmedMohamed El-Bialy-----

Systems and Biomedical Engineering Dept. Faculty of Engineering-CairoUniversity

Prof. Dr. Ismail Mohammed Hafez-----

Electronics and Communications Engineering Dept. Faculty of Engineering-Ain Shams University

Prof. Dr. Hani FikryRagai-----

Electronics and Communications Engineering Dept. Faculty of Engineering-Ain Shams University

Date: 2/2/2014

Abstract

Behavioral Modeling of MechanomyogramSignals Detection and Decomposition System

By: HishamGamal Mohamed Daoud

The analysis of the Mechanomyogram(MMG)signals of the muscles is a promising technique in order toevaluate the muscles effort and diagnose the differentneuromuscular disorders. In this dissertation, we use virtual muscle model and MEMS based accelerometer model to construct model based detection system. We propose to use the Empirical Mode Decomposition (EMD) method in order to analyze the MMG signal of the biceps brachii muscle. The EMD decomposes the MMG signal into a finite set of band-limited signals termed intrinsic mode functions (IMFs). The meanpower frequency (MPF) for each IMF has been computed. The MPF measure of the IMFs has been used as a feature in order to discriminate between normal, myopathic and neuropathiccases. It has been shown that the MPF feature of the IMFs hasprovided statistically significant difference between the different cases. The obtained classification accuracy using linear discriminant analysis (LDA) between thesethree casesillustrated the effectiveness of the proposed method.

The proposed MMG analysis system is hardware realized via two stages. The first stage is the detection stage which is formed of muscle stimulation, MMG measurement and MMG signal conditioning. The experiment is done on the biceps brachii muscle, as a case study. The second stage is FPGA implementation of Hilbert Huang Transform (HHT) core which relies on EMD. Before FPGA implementation, the HHT core was simulated and statistically tested to prove the discrimination capability of the decomposition technique after hardware implementation. The results

showed that the imaginary component of the HHT is statistically significant. The classification results showed that the imaginary component of the HHT could be considered an effective discriminator among different neuromuscular disorders for the biceps brachii muscle.

Key Words: mechanomyogram, accelerometer, empirical mode decomposition, Hilbert Huang transform, myopathy, neuropathy.

Summary

Behavioral Modeling of MechanomyogramSignals Detection and

Decomposition System

By: HishamGamal Mohamed Daoud

This dissertation consists of the following chapters:

Chapter Oneintroduces the MMG signals, its origin, history and characteristics.

Different detection techniques and comparison between them are illustrated. The

motivation for investigating MMG as a control signal, previous work and contribution

that demonstrate the potential of MMG as a control signal are mentioned.

Chapter Twogives an overview about the nerves and muscles. The organization of

the nervous system and its main components are illustrated. The resting and action

potentials are well discussed. The muscle structure, physiology and contraction

mechanism are demonstrated. Muscle behaviors in neuromuscular diseases are

presented andmyogram techniques such as EMG and MMG are discussed.

Chapter Three presents the used muscle model with brief explanation regarding its

operation and equations. The MEMS based accelerometer is explained with its theory

and significance. The specifications and behavioral model of the used MMG sensor

are also illustrated.

Chapter Fourintroduces the proposed MMG signals analysis algorithm. Firstly,

the experimental protocol is clarified. Then, the concept of Empirical Mode

Decomposition (EMD) and Hilbert Spectrum (HS) is presented. After that, the MMG

vi

feature to be tested is selected and the decomposition results and spectrums are illustrated and discussed. The decomposition results are statistically analyzed to test the discrimination capability of the proposed algorithm between normal and different pathological cases. Finally, Linear Discriminant Analysis (LDA) classification technique is demonstrated as the classification technique for the system. The classification accuracy is also determined statistically.

Chapter Fiveimplements the proposed MMG detection and decomposition system in hardware. The experiment is done on biceps brachii muscle. The detection stage is constructed by using muscle electrical stimulator, MEMS based accelerometer sensor and signal conditioning circuits. The decomposition stage introduces HHT core which is simulated and statistically tested to prove the discrimination capability of the decomposition technique after hardware implementation. The presented HHT core is implemented on FPGA.

Chapter Six concludes this dissertation and proposes future work.

List of publications

1.**HishamGamalDaoud**andHani FikryRagai"Mechanomyogram SignalDetection and Decomposition: conceptualisation andresearchdesign,".1st InternationalConference on Electrical and Computer Systems Engineering , Nov. 2010, Cairo,Egypt and InternationalJournalofHealthcareTechnology andManagement(IJHTM), 2012 Vol.13, No.1/2/3, pp.32-44.

2.**HishamGamalDaoud**,Hani FikryRagai and Hassan El Shahaly"Mechanomyographic Signal Analysis for Biceps Brachii Based on Empirical ModeDecomposition".ICECE 2013: International Conference on Electronics and CommunicationEngineering, Apr. 2013, Paris, France and World Academy Of Science, Engineering and Technology Journal,2013, Issue 76, Pages:564-570.

Table of contents

1 Introduction	1
1.1 Introduction	1
1.1.1 Mechanomyogram Signals	1
1.1.2MMG Detection Techniques	2
1.1.3MMG Signal Characteristics	4
1.1.4Motivation for investigating MMG as a control signal	6
1.1.5MMG as a control signal	7
1.2 Dissertation Outline	7
2 Nerves and Muscles	10
2.1 Introduction	10
2.2 The Nervous System	11
2.2.1 Organization of Nervous System	11
2.2.2The Nerve Cell	13
2.2.3Resting and Action Potentials	15
2.3 Muscles	18
2.3.1 Muscle Structure	18
2.3.2 Muscle Physiology	22
2.3.3 Muscle Contraction	27
2.3.4Muscle Behaviour in NeuromuscularDiseases	30
2.3.5Muscle of Study: Biceps Brachii	31
2.4 Myogram Techniques	32
2.4.1 Electromyogram	32
2.4.2 Mechanomyogram	38
2.5 Summary	39
3Modeling of Muscle and MMG Sensor	41
3.1 Introduction	41
3.2 Muscle Model	41
3.2.1Biceps Brachii Muscle Model	51
3.2.2MMG Extraction 52	
3.3 MMG Sensor	53

3.3.1 MEMS Based Accelerometer	54
3.3.2 MMG Sensor Model 60	
3.4Summary	63
4 MMG Signal Decomposition and Classification	64
4.1 Introduction	64
4.2Experimental Protocol	65
4.3 Decomposition Technique	66
4.3.1 Empirical Mode Decomposition	66
4.3.2Hilbert Spectrum Generation	72
4.3.3Proposed Analysis Algorithm	73
4.3.4 Statistical Analysis and Results	81
4.4 Classification Technique	83
4.4.1 Linear Discriminant Analysis	83
4.4.2 Statistical Analysis and Results	89
4.5Summary	90
5Hardware Implementation	91
5.1 Introduction	91
5.2 MMG Detection	92
5.2.1 Muscle Stimulator	92
5.2.2MMG Sensor	93
5.2.3PSoC Configuration	95
5.2.4 Measurement Hardware	102
5.2.5 Experiment and Results	105
5.3 MMG Decomposition	107
5.3.1 HHT IP Core and Simulation Result	107
5.3.2Statistical Analysis and Results	112
5.3.3FPGA Implementation	113
5.4 Summary	114
6 Conclusions and Future work	116
6.1Conclusions	116
6.2Future work	118
References	120

List of Figures

Figure 1.1 Motor unit recruitment strategy reflected in MMG. Typical MMG RMS and MPF curves during isometric contraction showing (A) recruitment of ST fibers, (B) increase in force with no change in frequency due to increased recruitment of ST fibers, (C) increased frequency and RMS due to recruitment of FT fibers, (D) increase in force with increased motor unit firing rate and decrease in RMS due to motor-unit fusion.
Figure 1.2 Dissertation overview9
Figure 2.1 Nervous system components
Figure 2.2 Organization of nervous system
Figure 2.3 Structure of neuron
Figure 2.4 Formation of an action potential based on changesin Na ⁺ and K ⁺ ior flow
Figure 2.5 Structure of skeletal muscle
Figure 2.6 Structure of sarcomere
Figure 2.7 Structure of skeletal muscle fiber
Figure 2.8 Motor units
Figure 2.9 Twitch contraction24
Figure 2.10 Motor unit recruitment
Figure 2.11 Contraction types (a) isometric contraction, (b) isotonic contraction 26
Figure 2.12 Contraction process (a) axon branch to a single muscle fiber,(b) neuromuscular junction
Figure 2.13 The sliding filament theory, (a) muscle relaxation case, (b) muscle contraction case
Figure 2.14 Neuropathy in: (1) motor unit, (2) motor neuron axon, (3) neuromuscular junction, myopathy in: (4) muscle fibers
Figure 2.15 Biceps brachii muscle
Figure 2.16 EMGand frequency spectrum measured from the tibialis anterior muscle during a constant force isometric contractionat 50% of maximum voluntary contraction
Figure 2.17 EMGdifferential amplifier configuration. The EMG is represented by m and the noise signal by n

Figure 2.18 The preferred electrode location is between the motor point or (innervation zone) and the tendinous insertion Error! Bookmark not defined.5
Figure 3.1 Modified Hill-type model
Figure 3.2 Schematic diagram of the model function
Figure 3.3 Fiber types creating and editing in virtual muscle model50
Figure 3.4 Muscle types creating and editing in virtual muscle model50
Figure 3.5 Simulink model block diagram of the muscle50
Figure 3.6 Biceps brachii muscle parameters
Figure 3.7 Simulink model block diagram of the biceps brachii muscle52
Figure 3.8 Simulink model of the MMG generation process
Figure 3.9 Accelerometer structure. Proof mass is attached through springs(k_S : spring constant) at substrate.It can move only up and down.Movable and fixed plates construct capacitors
figure 3.10 a) Electric circuit that measures acceleration through capacitor changes. b) if acceleration is zero, voltage output is also zero. c) \rightarrow e) when acceleration isn't zero, we get with the voltage follower square wave with the right amplitude and after demodulator voltage output V_{out} with the right amplitude and the right sign
Figure 3.11 ADXL203 accelerometer die photo
Figure 3.12 Behavioral model of one axis of ADXL203 accelerometer62
Figure 4.1Block diagram of the proposed model based system
Figure 4.2 Flow chart of the proposed EMD algorithm71
Figure 4.3 MMG signal and its IMFs for the first normal case75
Figure 4.4 MMG signal and its IMFs for the first myopathic case76
Figure 4.5 MMG signal and its IMFs for the first neuropathic case77
Figure 4.6 MMG signal and its HS for the first normal case
Figure 4.7 MMG signal and its HS for the first myopathic case79
Figure 4.8 MMG signal and its HS for the first neuropathic case80
Figure 4.9 The box plots of the MPFwith its mean indicated for (a) IMF1 for both normal and myopathic cases and (b) IMF8 for both normal and neuropathic cases
Figure 4.10 Projections of samples onto two different lines in the direction marked w
Figure 5.1Muscles electrical stimulator
Figure 5.2 Functional block diagram of ADXL203 dual axis accelerometer93

Figure 5.3 ADXL203 evaluation board
Figure 5.4 PSoC family cores
Figure 5.5 PSoC digital system distribution
Figure 5.6 PSoC analog system distribution
Figure 5.7 CY3210-PSoCEVAL1 evaluation board
Figure 5.8 Block diagram of PSoC based MMG measurement circuit (first implementation)
Figure 5.9 Block diagram of the MMG measurement circuit (second implementation)
Figure 5.10 The MMG measurement experiment setup106
Figure 5.11Screenshot of MMG signal measurement of the biceps brachii muscle
Figure 5.12The analytic filter structure
Figure 5.13Plots of the filter $H_{A1}(e^{j\omega})$, (a) normalized magnitude response, (b phase response
Figure 5.14Block diagram of the HHT core simulation process
Figure 5.15Modelsim simulation result of the HHT core
Figure 5.16Altera DE1 board

List of Tables

Table 2.1Characteristics of skeletal muscle fibers	21
Table 2.2 Factors that influence surface EMG	37
Table 3.1 Equations and coefficients of the virtual muscle model	45
Table 3.2 Symbols and definitions	47
Table 3.3 Specifications of dual axis accelerometer ADXL203	61
Table 5.1Filter capacitor selectionC _v and C _v	94

Abbreviations

ADC : Analog to Digital Converter

Af : Activation-Frequency

AGND : Analog Ground

ALS : Amyotrophic Lateral Sclerosis

AM : Amplitude Modulation

ANOVA : Analysis of Variance

ANS : Autonomic Nervous System

API : Application Programming Interface

BW : Band Width

CMRR : Common Mode Rejection Ratio

CNS : Central Nervous System

CPU : Central Processing Unit

CRC : Cyclic Redundancy Check

CT : Continuous Time

DAC : Digital to Analog Converter

DBB : Digital Block for Basic Purposes

DC : Direct Current

DCB : Digital Block for Communication Purposes

EEPROM: Electrically Erasable Programmable Read Only Memory

EMD : Empirical Mode Decomposition

EMG : Electromyogram

FL : Force-Length

FM: Frequency Modulation

FPGA : Field Programmable Gate Array

FT : Fast-Twitch

FV : Force-Velocity

GPIO : General Purpose Input and Output

HHT : Hilbert Huang Transform

HPF : High Pass Filter

HS : Hilbert Spectrum

I2C : Inter-Integrated Circuit

IMF : Intrinsic Mode Function

INSAMP : Instrumentation Amplifier

IO : Input and Output

IP : Intellectual Property

IrDA : Infrared Data Association

ISSP : In-System-Serial-Programming

LCD : Liquid Crystal Display

LDA : Linear Discriminant Analysis

LED : Light Emitting Diodes

LPF : Low Pass Filter

M8C : 8 bit Microcontroller

MCU : Microcontroller Unit

MDF : Median Frequency

MEMS : Micro Electro-Mechanical Systems

MHS : Marginal Hilbert Spectrum

MIPS : Million Instructions Per Second

MMG : Mechanomyogram

MNF : Mean Frequency

MPF : Mean Power Frequency

MU : Motor Unit

MUAP : Motor Unit Action Potential

MVC : Maximum Voluntary Contraction

Opamp: Operational Amplifier

PGA : Programmable Gain Amplifier