

Role of New MRI Modalities (MR Spectroscopy, Perfusion and Diffusion Tensor Imaging) in multiple Sclerosis

Essay

Submitted in Partial Fulfillment for Master Degree In Radiodiagnosis

By Ahmed Salah Abdallah Saleh

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{C}h.$

Faculty of Medicine- Ain Shams University

Under Supervision of **Prof. Dr. Yasser Ali Mohammed Abdelmawla**

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Dr. Amir Louis Louka

Lecturer of Radiodiangosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

First and foremost, I feel indebted to **God**, the most merciful, who gave me the power to accomplish this work.

I wish to express my gratitude to my supervisor, Prof. Dr. Yasser Ali Mohamed Abdelmawla, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University. His unique supervision, meticulous advice and the long time and tremendous effort he offered were invaluable in accomplishing this work.

I also express my deepest thanks to **Dr.** Amir **Touis Touka**, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University for his patience, friendly attitude and for being generous with time and effort.

Finally, Many thanks and appreciation to all those who generously supported me by all means, the staff of Radiodiagnosis Department, Ain Shams University.

Contents

List of Abbreviations I
List of TablesV
List of FiguresVI
Introduction1
Aim of the Work3
Review of Literature
- Chapter (1): MRI Anatomy of Brain
- Chapter (3): Physical Principles of New MRI Modalities .75 I- Physical Principles of Diffusion Tensor MRI Imaging
References 179
Arabic Summary

List of Abbreviations

Abb.	Full term
ADC	Apparent diffusion coefficient
AIF	Arterial input function
ASL	Arterial spin labeling
BAT	The time of arrival
BBB	Blood brain barrier
CAT	Computed Axial Tomography
CBF	Cerebral blood flow
CBV	Cerebral blood volume
CCSVI	Chronic cerebrospinal venous insufficiency
CHESS	Chemical shift selective saturation
Cho	Choline
CIS	Clinically isolated syndromes
C-MRI	Conventional magnetic resonance
CNS	Central nervous system
Cr	Creatine
CSF	Cerebrospinal fluid
CSI	Chemical Shift Imaging
CST	Cortico-spinal tract
DIS	Dissemination of lesions in space
DIT	Dissemination of lesions in time
DSC	Dynamic Susceptibility Contrast

Abb.	Full term
DTI	Diffusion tensor imaging
DWI	Diffusion-weighted imaging
EDSS	Expanded Disability Status Scale
EPI	Echo-planar imaging
FA	Fractional anisotropy
FOV	Field-of-view
GA	Glatiramer acetate
Gd	Gadolinium
Gln	Glutamine
GM	Gray matter
H MRS	Proton Magnetic resonance spectroscopy
HA	Hunter's angle
HARDI	High angular resolution diffusion imaging
Lac	Lactate
MAG	Myelin-associated glycoprotein
MD	Mean diffusivity
mI	Myoinositol
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
MRSI	Magnetic resonance spectroscopic imaging
MTI	Magnetization transfer imaging
MTT	Mean transit time

Abb.	Full term
NAA	N-acetylaspartate
NAAG	N-acetyl aspartyl glutamate
NAGM	Normal-appearing gray matter
NAWM	Normal-appearing white matter
NEX	Number of excitations
NP	Neuropsychological
ppm	Parts per million
PPMS	Primary progressive multiple sclerosis
PRESS	point reserved spectroscopy
PRMS	Progressive relapsing multiple sclerosis
rCBV	Relative cerebral blood volume
RGB	Red, green, and blue
ROI	Region of interest
RRMS	Relapsing remitting multiple sclerosis
SNR	Signal-to-noise ratio
SPMS	Secondary progressive multiple sclerosis
STEAM	Stimulated echo acquisition mode
TA	Time of arrival
TE	Echo time
TR	Repetition time
TTP	Time to peak
VOI	Volume of interest

Abb.	Full term
WBNAA	whole-brain NAA concentration
WM	White matter

List of Tables

Table	Title	Page
1	2010 McDonald MRI Criteria for	61
	Demonstration of DIS	
2	2010 McDonald MRI Criteria for	61
	Demonstration of DIT	
3	Summary of recommendations on the use of	66
	magnetic resonance imaging (MRI) in	
	relapsing remitting patients during treatment	
	with a disease-modifying therapy	
4	Diffusion-derived and tractography-derived	87
	measures commonly reported in clinical	
	studies	

List of Figures

Figure	Title	Page
1	Axial mri scan T1WI (A), T2WI (B) above the	7
	level of foramen magnum	
2	Axial mri scan T1WI (A), T2WI (B) at the level of	8
	the fourth ventricle	
3	Axial MRI scan T1WI (A), T2WI (B) at the level	10
	above the fourth ventricle	
4	Axial MRI scan T1WI (A), T2WI (B) at the third	12
	ventricular level	
5	Axial MRI scan T1WI (A), T2WI (B) at the low	13
	ventricular level.	
6	Axial MRI scan T1WI (A), T2WI (B) at the mid	14
	ventricular level.	
7	Axial MRI scan T1WI (A),T2WI (B) above the	15
	ventricular level	
8	Coronal MRI scan T2WI at the level of frontal	16
	horns	
9	Coronal MRI scan T1WI (A), T2WI (B) at the	18
	level of the third ventricle.	
10	Coronal MRI scan T1WI (A), T2WI (B) through	19
	the midbrain	
11	Coronal MRI scan T1WI (A), T2WI (B) at the	20
	mid-to-posterior ventricular level.	
12	Coronal MRI scan T1WI (A), T2WI (B) slightly	22
	posterior to the occipital horns.	
13	Sagittal MRI scan T1WI (A), T2WI (B)at the	24
	midsagittal level	

Figure	Title	Page
14	Sagittal MRI scan T1WI (A) ,T2WI (B) through	25
	the body of the lateral ventricle	
15	Sagittal MRI T1WI scan at the lateral orbital level	26
16	Four viewing angles of 3D depictions of brainstem	28
	fibers	
17	Four viewing angles of 3D depictions of projection	30
	and thalamic fibers.	
18	Four viewing angles of 3D depictions of	32
	association fibers	
19	Four viewing angles of 3D depictions of limbic	34
	system fibers	
20	Four viewing angles show 3D depictions of	36
	callosal fibers	
21	Three-dimensional presentation of projection,	37
	association, and callosal fibers	
22a,b	Illustrative classic neuropathology of MS	39
23	Illustration of MRI-pathology correlation in MS in	45
24	a formalin-fixed cerebral hemisphere MS plaques onT1 weighted MRI, postcontrast	69
24	infusion	09
25	T2WI (A), FLAIR (B), and contrast-enhanced	71
	T1WI of a 30-year-old female RRMS patient	
26	Typical MS with brain lesions	72
27	Typical MRI Lesions in MS	72
28	Brownian motion of a microscopic particle	76
29	Isotropic and anisotropic diffusion of water	78
	molecules in diffusion MRI.	
30	Fiber tracts have an arbitrary orientation with	82
	respect to scanner geometry (x, y, z axes) and	
	impose directional dependence (anisotropy) on	
	diffusion measurements	

Figure	Title	Page
31	A, FA map without directional information. B, Combined FA and directional map	85
32	Diffusion imaging including ADC map (a), FA map (b), and diffusion tensor tracking image (c) from a patient with early MS. Note that the MS lesion (arrow) presents abnormal diffusion	86
	contrasts compared to normal appearing tissue	
33	White matter fiber tractography. Left: Seed ROI was set at corpus callosum on central sagittal image. Right: Target ROI (sphere) was set around at pyramidal area	88
34	Schematic diagram of a streamline tractography Approach	89
35	Fiber crossing, Top: Fiber crossing point is shown by an arrow. Bottom: Local anisotropy is visualized by ellipsoids and coronal image	93
36	Unsuppressed water proton spectrum of a human brain tumor	100
37	Water suppressed proton spectrum of a human brain tumor	101
38	Single-voxel localization techniques	104
39	2D-PRESS-MRSI pulse sequence	110
40	Diagram of proton MR spectrum of an adult Brain	115
41	Representative spectrum of the human brain in Vivo	117
42	Axial gradient-echo echo-planar MRI showing cerebral blood flow and volume in a patient with MS	121
43	T2* weighted PRESTO (Principles of echoshifting with a train of observations) magnitude images before the contrast agent arrival (top left image) and at several time points during the contrast passage through the brain vasculature	126

Figure	Title	Page
44	Diagram explaining calculation of relative	127
	cerebral blood volume, cerebral blood flow, and mean transit time using dynamic contrast-	
	enhanced T2-weighted technique	
45	Generation of the concentration–time curve	128
46	The resulting CBF, CBV and MTT maps after post processing of the data	130
47	Multiple sclerosis in a 28-year-old man presenting with visual problems	134
48	Multiple sclerosis in a 59-year-old man with a long history of recurrent seizures.	135
49	Example of MRI diffusion weighted images (DWI) from the Buffalo Neuroimaging Analysis Center in a 44 year-old man with SP MS	136
50	Selected axial and sagittal diffusion tensor maps from a patient with multiple sclerosis. Mean diffusivity (A, B), fractional anisotropy (C, D) and color primary eigenvector map (E, F)	139
51	Fiber tractography in a patient with MS (A) and a healthy volunteer (B).	147
52	Composite image showing information from several sequential MRI scans of a patient with MS The transparent brain surface shows the location of the lesions (red) determined from a T2- weighted image.	150
53	3D DTI-tractography of the corpus callosum (CC)	152
54	Spectra representing the metabolic patterns in a focal inflammatory demyelinating lesion	162
55	Proton brain MRI/MRSI examinations of a	163
	multiple sclerosis patient performed during the	
	acute phase of the disease (left), 1 month later	
	(center) and 6 months later (right).	

Figure	Title	Page
56	Magnetic resonance spectroscopy findings for a	165
	total of 66 T2-weighted lesions that had persisted	
	for at least 6 months in one or another of 9	
	relapsing-remitting multiple sclerosis (MS)	
	patients	
57	Application of outer volume suppression bands to	168
	minimize extrameningeal tissue contamination	
58	(a) Normal spectra at TE of 136 ms (A), 18 ms	173
	(B) from a VOI (C) in the left centrum semiovale.	
	Glx: glutamine _ glutamate; Lip _ aa:	
	lipids and amino acids; mI: myoinositol	