EFFECTS OF SILDENAFIL CITRATE VERSUS ALPHA METHYL DOPA ON PLACENTA AND UMBILICAL CORD VESSELS IN HYPERTENSIVE PREGNANT RATS

Thesis

Submitted For Partial Fulfillment of M.D Degree in Anatomy

By

Heba Ramadan Eid Sorour

Assistant Lecturer-Anatomy Department Faculty of Medicine, Ain Shams University

Supervised by

Prof. Khaled Naim Hamdi

Professor of Anatomy Faculty of Medicine- Ain Shams University

Prof. Hany Shawky Nadim

Professor & Chairman of Anatomy Department Faculty of Medicine- Ain Shams University

Prof. Ashraf Ramzy Youssef

Professor of Anatomy Faculty of Medicine- Ain Shams University

Ass. Prof. Nagwa Ebrahim El-Nefiawy

Assistant Professor of Anatomy Faculty of Medicine- Ain Shams University

Ass. Prof. Ahmed Yehia Awad

Assistant Professor of Anatomy Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2015

First of all, I would like to express my endless and everlasting thanks to **ALLAH**; without his help, this work would never have been finished.

My profound thanks and appreciation to **Prof.** Khaled Naim Hamdi, Professor of Anatomy, Faculty of Medicine, Ain Shams University for his guidance, encouragement and support. This work could not have reached its goal without his help.

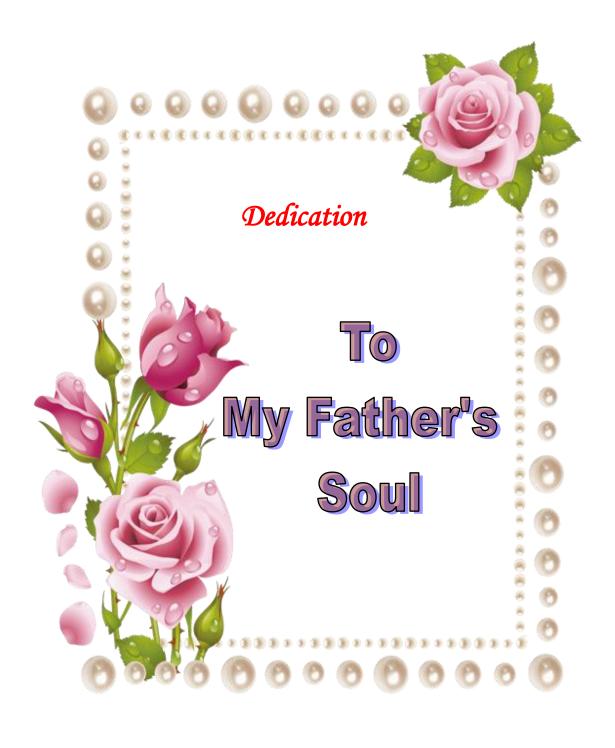
I would like to express my profound gratefulness to **Prof. Hany Shawky Nadim,** Professor and Chairman of Anatomy Department, Faculty of Medicine, Ain Shams University, for his continuous care, valuable remarks and suggestions that helped me starting from the beginning till the final production of this work especially in the respect of image analysis and statistical analysis.

I wish to express my sincere appreciation to **Prof. Ashraf Ramzy Youssef,** Professor of Anatomy, Faculty of Medicine, Ain Shams University, for his endless patience, guidance, supervision, support and encouragement.

I am indebted to Ass. Prof. Nagwa Ebrahim El-Nefiawy, Assistant Professor of Anatomy, Faculty of Medicine, Ain Shams University, for her help, supervision and encouragement and for her patience.

I am thankful to Ass. Prof. Ahmed Yehia Awad, Assistant professor of Anatomy, Faculty of Medicine, Ain Shams University, for his help. I would like to express my gratefulness and sincere appreciation to **Dr. Eman Hathout,** Lecturer of Pharmacology, Faculty of Medicine, Ain Shams University, for her extreme kindness, supreme help, supervision, valuable remarks and suggestions especially in the respect of blood pressure measurement. I will be forever thankful.

My mom, no words can express my sincere appreciation for your support, encouragement and motivation power you gave to me to continue and keep hard work to achieve my goals.


My brother **Mohamed Ramadan**, you are the hero of this experiment, many thanks for your help.

Special thanks to my lovable sweet little **Retal** for her perfectly behaved attitude throughout this study.

Finally, I would like to express my deepest thanks and gratitude to my husband **Tarek Abd El Moez**, who was always there for me, caring, helping and advising me.

Heba Ramadan Eid Sorour

Contents

Subject	Page
List of Abbreviations	i
List of Tables	ii
List of Graphs	iii
Introduction and Aim of Work	
Review of Literature	
- Hypertension	6
- The Placenta	18
- Umbilical cord	47
- Drugs	51
Materials and Methods	63
Results	
Light microscopic study	73
Image analysis and Statistical Study	201
Discussion	228
Summary and Conclusion	248
References	253
Arabic Summary	

List of Abbreviations

Abb.	Meaning
BP	Blood pressure
cAMP	Cyclic adenosine monophosphate
cGMP	Cyclic guanosine monophosphate
DBP	Diastolic blood pressure
FDA	Food and drug administration
GTP	Guanosine triphosphate
Hx &E	Haematoxylin and eosine
HY	Hypertension
IUGR	Intrauterine growth retardation
L-NAME	Nitro L- arginine methyl ester
NK cells	Natural killer cells
NO	Nitric oxide
NOS	Nitric oxide synthetase
O ₂ ⁻	Superoxide anion
OONO ⁻	Peroxynitrite
PAS	Periodic acid Schiff
PDE5	Phosphodiesterase 5
PDEs	Phosphodiesterases isoenzymes
PE	Preeclampsia
ROS	Reactive oxygen species
SBP	Systolic blood pressure
SC	Sildenafil citrate
SPSS	Statistical package for social studies
TUNEL	Terminal deoxynucleotidyl transferase-
	mediated dUTP nick and labeling
αMD	Alpha methyl dopa

List of Tables

Table	Title	Page
1	Comparison between rat and human	43
1	pregnancy and full term placentation	
2	Changes in the surface area of fetal	202
	capillaries	
3	Changes in the perimeter of fetal	204
	capillaries	
4	Changes in the surface area of maternal	206
	sinusoids	
5	Changes in the perimeter of maternal	208
_	sinusoids	
6	Changes in the surface area of umbilical	210
	vein	
7	Changes in the perimeter of umbilical	212
_	vein	
8	Changes in the surface area of umbilical	214
	artery	24.6
9	Changes in the perimeter of umbilical	216
10	artery	210
10	Changes in fetal weight	218
11	Changes in placental weight	220
12	Changes in blood pressure in day 6 of	222
	pregnancy	
13	Changes in blood pressure in day 13 of	224
	pregnancy	
14	Changes in blood pressure in day 18 of	226
	pregnancy	

List of Graphs

Figure	Title	Page
1	Changes in the surface area of fetal capillaries	202
2	Changes in the perimeter of fetal capillaries	204
3	Changes in the surface area of maternal sinusoids	206
4	Changes in the perimeter of maternal sinusoids	208
5	Changes in the surface area of umbilical vein	210
6	Changes in the perimeter of umbilical vein	212
7	Changes in the surface area of umbilical artery	214
8	Changes in the perimeter of umbilical artery	216
9	Changes in fetal weight	218
10	Changes in placental weight	220
11	Changes in blood pressure in day 6, 13, 18 of pregnancy	227

الملخص العربي

يعتبر ارتفاع ضغط الدم أثناء الحمل واحدة من أكثر المشكلات شيوعا حيث تحدث بنسبة ١٠-١٥٪ من حالات الحمل. ويعتبر من أهم أسباب الوفاة للأم والجنين على مستوى العالم. وهذا الارتفاع في ضغط الدم ينتج من أن الشرايين الحلزونية تغزو بطانة الرحم بطريقة غير طبيعية للغلاف الخلوى المغذى للحويصلة الجنينية (السيتوتروفوبلاست) مما يؤدى الى نقص في الدم المغذى للمشيمة وتغييرات هيكلية في الاوعية الدموية السرية.

يعمل دواء سيترات السلدينافيل على توسيع الاوعية وذلك بتثبيط إنزيم الفسفوداى استريز والذى يحد من تكسير فوسفات الجوانوزين الأحادى وتحويلة لصورتة الخاملة. وقد استخدمت سيترات السيلدنافيل على نطاق واسع في السنوات الأخيرة في علاج العديد من الامراض مثل ارتفاع ضغط الدم الرئوى، ضعف الإنتصاب، تأخر نمو الجنين داخل الرحم والولادة المبكرة.

من جهة أخرى يستخدم الألدومت (ألفا ميثيل دوبا) في علاج حالات ارتفاع ضغط الدم ويعتبر الدواء التقليدي لعلاج حالات ارتفاع ضغط الدم أثناء الحمل إلا أنه له آثار جانبية ضارة سواء نفسية أوفسيولوجية. كما يمنع استخدامه في الكثير من الحالات مثل الاكتئاب وأمراض الكبد والأورام وأثناء الرضاعة.

يهدف هذا البحث إلى المقارنة بين التأثير العلاجي لسيترات السيلدنلفيل مقابل علاج ضغط الحمل التقليدي مثل الألدومت على قنوات الأوعية الدموية بالمشيمة والحبل السري وذلك في حالات ارتفاع ضغط الدم في الجرذان الحوامل.

١

استخدم في هذا البحث عدد ستة وثلاثون جرد من جردان الإناث البيضاء البالغة وقسمت إلى ست مجموعات. المجموعة الأولى وهي مجموعة الجرذان الحوامل التي لم تأخذ أي علاج. أما المجموعة الثانية فاستخدمت كنموذج للجرذان الحوامل المصابة بارتفاع ضغط الدم وذلك باستخدام عقار نيترو - ارجينين ميثيل استر بجرعة (٥٠ مغ / كغ / يوم) عن طريق الفم. جرذان المجموعة الثالثة تستخدم كنموذج للجرذان الحوامل والتي تعالج بعقار سيترات السلدينافيل بجرعة (٤ مغ / كغ /يوم) عن طريق الفم. جرذان المجموعة الرابعة تستخدم كنموذج للجرذان الحوامل والتي تعالج بعقار الألدومت بجرعة (٧٧ مغ /يوم) عن طريق الفم وذلك حسب قاعدة باجيت وبارنز. أما المجموعة الخامسة فتستخدم الجرذان كنموذج لحالات ارتفاع ضغط الدم أثناء الحمل وتعالج بعقار سيترات السيلدنافيل بنفس الجرعات السابقة. جرذان المجموعة السادسة تستخدم كنموذج لحالات ارتفاع ضغط الدم أثناء الحمل وتعالج بعقار الألدومت بنفس الجرعات السابقة. ولقد تم تخدير الجرذان في اليوم العشرين من الحمل وذلك للحصول على المشيمة والحبل السرى وتم تجهيز العينات وصبغها وتحضيرها للفحص الهستولوجي والهستوكيميائي للأنسجة مع عمل القياسات.

وبالفحص الميكروسكوبي للأنسجة وبالتحليل الإحصائي للقياسات وجد أن التغيرات المجهرية في المشيمة الناتجة عن ارتفاع ضغط دم أثناء الحمل تتمثل في احتقان الشعيرات الدموية للجنين، تكوين عقد بطبقة الغلاف الخارجي متعدد الأنوية (السنستيوتروفوبلاست) وتساقطها، زيادة الانقسامات في الغلاف الخلوي المغذى للحويصلة الجنينية (السيتوتروفوبلاست)، زيادة في سمك الغشاء القاعدي للأرومة المغذية للجنين (التروفوبلاست)، التحلل الفبريني، تكون الجلطات، تحول الأنسجة لكتلة هيالينية غير واضحة المعالم الي جانب وجود مساحات شاسعة من الخلايا المتحللة. وكذلك يحدث

تغييرات بالحبل السري والتى تتمثل في ترقق وتمزق بطانة الوريد. أما الشريان فله نفس سمك جدار شريان الحبل السرى للجرذان الحوامل التى لم تعالج بأية أدوية. ولكن يبدو في أنوية بعض الخلايا مظاهر الاختلال وفي البعض الآخر مظاهر لموت الخلايا المبرمج. وبمقارنة القياسات وجدت تغييرات تتمثل في ضيق بالشعيرات الدموية للجنين، ارتفاع بضغط الدم، مع انخفاض بوزن الجنين والمشيمة.

وبالمقارنة وجد في فحص عينات مجموعة الجرذان الحوامل المصابة بارتفاع ضغط الدم وتعالج بسيترات السلدينافيل تحسن شبه كامل التغيرات المرضية التي حدثت نتيجة ارتفاع ضغط الدم أثناء الحمل وقد تمثل ذلك في نقص سمك الغشاء القاعدي للأرومة المغذية للجنين (التروفوبلاست) للمعدل الطبيعي، إختفاء العقد بخلايا طبقة الغلاف الخارجي متعدد الأنوية (السنستيوتروفوبلاست) والتساقط بها، التحلل الفبريني ونقص في موت الخلايا المبرمج. ولقد أظهرت المنطقة القاعدية للمشيمة نقصاً في كل من التحلل الفبريني وتحول الأنسجة لكتلة هيالينية غير واضحة المعالم. وبفحص أوعية الحبل السري وجد تحسن في سمك الجدار والبطانة، أيضا كان هناك انخفاض في ضغط الدم بما يقارب المعدل الطبيعي له مع زيادة في وزن الجنين والمشيمة.

ولقد وجد في فحص عينات مجموعة الجرذان الحوامل المصابة بارتفاع ضغط الدم وتعالج بالميثيل دوبا تحسن طفيف وذلك نتيجة لعدم إختفاء العقد بخلايا طبقة الغلاف الخارجي متعدد الأنوية (السنستيوتروفوبلاست) والتساقط بها، زيادة في سمك الغشاء القاعدي للأرومة المغذية للجنين (التروفوبلاست)، التحلل الفبريني، وتحول الأنسجة لكتلة هيالينية غير واضحة المعالم ووجود الخلايا المتحللة. ولقد أظهرت

القياسات تحسن في ضغط الدم، وزن الجنين والمشيمة ولكن لم تصل للمعدل الطبيعي.

ويستنتج من ذلك أن سيترات السلدينافيل أكثر فعالية في علاج ارتفاع ضغط الدم أثناء الحمل من الميثيل دوبا، حيث أن استخدام الميثيل دوبا أحدث تحسناً طفيفاً للتغييرات الضارة التي حدثت في أنسجة المشيمة والحبل السرى نتيجة ارتفاع ضغط الدم أثناء الحمل. أما سيترات السلدينافيل فقد أحدثت تحسناً ملحوظاً في أنسجة المشيمة والحبل السرى. وبالتالي ووفقاً لهذة النتائج فأن سيترات السلدينافيل قد تكون العلاج الأمثل لحالات ارتفاع ضغط الدم أثناء الحمل.

Introduction

The placenta is a complex feto-maternal vital organ. Placenta is essential for fetal growth, survival and development. The placenta acts as the interface between fetal and maternal environments (Magon et al., 2011). It is composed of highly specialized cells that have a wide spectrum of functions including anchoring the developing fetus to the uterine wall, immune protection of the fetus, O₂/ CO₂ exchange, providing nutrients for the fetus and removing waste products (Abou-Elghaita et al., 2012).

Hypertension (HY) with pregnancy is one of the most common medical problems. HY may complicate 10–15% of pregnancies. HY is a major cause of maternal and perinatal morbidity and mortality worldwide. The most common complication of HY with pregnancy is preeclampsia/eclampsia, which is the leading cause of maternal death in the developing world (**Khan et al., 2006**).

Studies during the past decade suggested that the initiating event for HY with pregnancy was reduced uteroplacental perfusion as a result of abnormal invasion of spiral arterioles by the extravillous cytotrophoblast with consequent reduction of blood flow to the intervillous space and associated structural changes in umbilical vessels (Backes et al., 2011and Barra et al., 2012).

The resulting placental ischemia and hypoxia lead to widespread activation/dysfunction of the maternal vascular endothelium. This results in an increase in the production of vasoconstrictors such as endothelin, thromboxane and reactive oxygen species (ROS) and decreased formation of vasodilators such as nitric oxide (NO) and prostacyclin (Granger et al., 2001).

The similarity between the human and rat definitive placenta that both of them were classified as chorio-allantoic type, haemochorial and discoid in shape. Treating rats with L-nitro arginine methyl ester hydrochloride (L-NAME) cause injury to the vascular endothelium and this model is widely used to study HY. L-NAME causes endothelium-dependent contraction and inhibits endothelium-dependent relaxation to a variety of agonists (Georgiades et al., 2002 and Simko et al., 2010).

Endothelial dysfunction which occurs due to HY is characterized by impairment of NO bioavailability. NO is a potent vasodilator and relaxant of vascular smooth muscle. The vascular changes during normal pregnancy have been

attributed to the increase of NO synthesis, increased plasma concentration and urinary excretion of cyclic GMP (cGMP), a second messenger of NO (**Sheppard and Khalil, 2010**).

NO acts through stimulating the conversion of guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP), which can also be converted back to GTP by proteins known as phosphodiesterases, this conversion effectively blocks further NO signaling. Several agents like Sildenafil citrate (SC) were claimed to improve NO synthesis (Ramani and Park, 2010).

Sildenafil citrate (SC) had been widely used in the last years in treatment of erectile dysfunction. SC is a specific phosphodiesterase-5 inhibitor that acts by reducing cGMP breakdown; this makes the vascular smooth muscle more sensitive to both endogenous and exogenous NO with resultant dilatation of vascular smooth muscle (Antoniu, 2006).

SC was used also in the treatment of pulmonary hypertension and congestive heart failure in pregnancy. It proved to be safe, effective with lack of teratogenic or fetotoxic effects even at high dosages in animal studies (Villanueva-Garcia et al., 2007).