Acute Dyspnea in Critically III Patient

Essay

Submitted for Partial Fulfillment of Master Degree in

Intensive Care

By

Shaimaa Abd El Bakey Sayd Ahmed

M. B. B.Ch, Menofia University

Under supervision of

Prof. Dr. Mohamed Abd-El-Galil Sallam

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

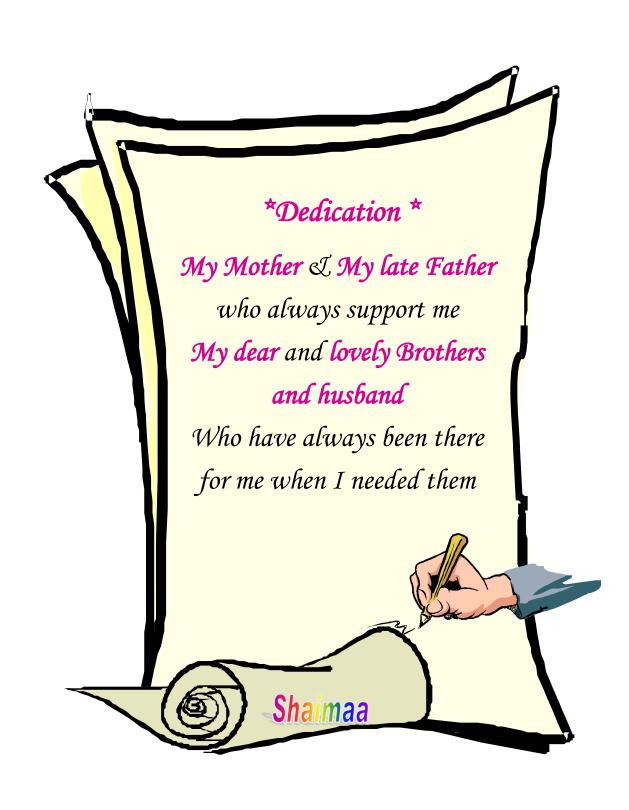
Assist. Prof. Dr. Randa Ali Shokry

Assist. Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mayada Ahmed Ibrahim

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2015



سورة البقرة الآية: ٢٢

- Tirst and foremost thanks to Allah, the most beneficent and merciful.
- I wish to express my deep appreciation and sincere gratitude to Prof. Dr. Mohamed Abd-El-Galil Sallam, Professor of Anesthesia, Intensive Care and Pain Management, Ain Shams University, who suggested this subject for reviewing and for his supervision, continuous help and patience. It was a great honor to me to work under his supervision.
- Twish to express my sincere thanks and deepest gratitude to Assist. Prof. Dr. Randa Ali Shokry, Assist. Professor of Anesthesia, Intensive Care and Pain Management, Ain Shams University for her eminent guidance, encouragement and revision throughout the work.
- Special appreciation to Or. Mayada Ahmed Ibrahim, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her kind advice, valuable instructions and continuous support which was the corner stone in the completion of this work.
- A wish to express my sincere thanks to My examiners for reviewing and their bests.
- Last but not least, I would like to present a lot of thanks to My Mother, whose without her help support and love this work could not come to birth.

A Shaimaa Abd El Bakey Sayd Ahmed

Contents

Subjects Pag		
List of Abbreviations	I	
List of Tables	V	
List of Figures	VI	
• Introduction	1	
Aim of the work	3	
Review of literature		
- Chapter (1): Pathophysiology of dyspnea	4	
- Chapter (2): Assessment of dyspnea	17	
- Chapter (3): Management of common	causes of	
acute dyspnea	37	
• Summary	107	
• References	110	
Arabic summery		

List of Abbreviations

ABC: Airway, breathing, circulation

ABG : Arterial blood gases

ACC : American college of cardiology

ACCF : American college of cardiology foundation

ACCP: American college of clinical pharmacy

ACE : Angiotensin converting enzyme

ADHF : Acute decompensated heart failure

AHA : American heart association

ARDS : Acute respiratory distress syndrome

ATS : American thoracic society

BNP : Brain natriuretic peptide

CAD : Coronary artery disease

CAP : Community acquired pneumonia

CF : Cystic fibrosis

CNS : Central nervous system

COPD : Chronic obstructive pulmonary disease

CRP : C reactive protein

CT : Computerized tomography

CTPA : Computerized tomography pulmonary

angiography

CTPH : Chronic thromboembolic pulmonary

hypertension

E List of Abbreviations &

CXR : Chest x-ray

DLCO: Diffuse capacity for carbon monoxide

DVT : Deep venous thrombosis

ECG : Electrocardiogram

ECLS: Extracorporeal lung support

ECMO: Extracorporeal membrane oxygenation

ELISA : Enzyme linked immunosorbant assay

ESC : European society of cardiology

FBC: Full blood count

FEV : Forced expiratory volume

FIO2 : Fractional inspired oxygen

FVC: Forced vital capacity

HF : Heart failure

HFOV: High frequency oscillatory ventilation

HFSA: Heart failure society of America

ICU : Intensive care unit

IDSA : Infectious diseases society of America

IGA : Immunoglobulin A

IVC: inferior vena cava

LBBB: Left bundle branch block

LIPS : Lung injury prediction score

LMWH: Low molecular weight heparin

LVEF: Left ventricular ejection fraction

MI : Myocardial infarction

E List of Abbreviations &

MRA: : Magnetic resonance angiography

MRSA : Methicillin resistant staphylococcus aureus

NOAC: New oral anticoagulant

NTS : Nuclus tractus solitarius

P.E: Pulmonary embolism

PCI : Percutaneous cornary intervention

PCR : Poly chain reaction

PEEP : Positive end expiratory pressure

PEFR: Peek expiratory flow rate

PIOPED: Prospective investigation of pulmonary

diagnosis

PSP: Primary spontaneous pneumothorax

RAS : Renin angiotensin system

RSV : Respiratory synctial virus

RTN: : Retrotrapzoid nuclus

RV : Right ventricle

SARS : Severe acute respiratory syndrome

SC : Subcutaneous

SNOS : S-nitrosothiols

SPECT: Single photon emission computerized

tomography

SSP : Secondary spontaneous pneumothorax

STEMI: ST segment elevation myocardial infarction

TTE : Trans thoracic echocardiology

🕏 List of Abbreviations 🗷

UFH : Unfractinated heparin

V**Q**: : Ventillation perfusion

VATS: Video assisted thoracoscopy

VKA: Vitamin k antagonist

VMS : Ventral surface of medulla

VTE : Venous thromboembolism

WHF : World health federation

List of Tables

Table No	Title	Page
Table (1)	Wells criteria and Modified Wells criteria.	44
Table (2)	Routine Pleural Fluid Tests for Pleural Effusion.	83
Table (3)	Optional Pleural Fluid Tests for Pleural Effusion.	84
Table (4)	Community-acquired pneumonia severity index (PSI) for adults.	91
Table (5)	Pneumonia Score Interpretation.	92
Table (6)	CURB-65 pneumonia severity score	92
Table (7)	DSA/ATS guidelines: Recommended empiric antibiotics for community-acquired pneumonia in adults.	93
Table (8)	British Thoracic Society guidelines: Initial empirical treatment regimens for community-acquired pneumonia (CAP) in adults.	96

List of Figures

Figure No	Title	Page
Fig. (1)	Regulation o ventilation.	4
Fig. (2)	Schematic representation of afferent pathway of dyspnea from vagal receptors and peripheral chemoreceptors to the CNS.	6
Fig. (3)	How S-nitrosothiols work on brainstem to control breathing.	11

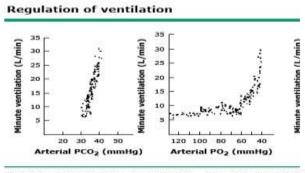
Introduction

Acute dyspnea is one of the main reasons of admission in ICU. It is the term which generally describes few sensations as frightening, not being able to get enough air. Although shortness of breath [dyspnea] is likely to be experienced differently by different people, it's often described as an intense tightening in the chest or feeling of suffocation. Depending on the cause, you may experience shortness of breath just once or have recurring episodes that could become constant. Very strenuous exercise, extreme temperatures, massive obesity and high altitude all can cause shortness of breath in a healthy person. Outside of these examples, shortness of breath is likely a sign of a medical problem (*Bozkurt et al., 2003; Schwartzstein, 2013; Marx, 2010 and Rosenow, 2013*).

There are many causes of Acute Dyspnea in Adults like [Pulmonary Embolism, Pulmonary edema, Obstructed Airway (Foreign body, Epiglottitis), spontaneous pneumothorax, pneumonia, asthma or COPD myocardial infarction, massive lung collapse, ARDS,....] (*Stulbarg*, 2000 and Zoorob, 2003).

Evaluation of Acute dyspnea including immediate ABC management [emergency Airway management, emergency breathing management and emergency circulation management], then obtain intial vital signs

temperature, blood pressure, respiratory rate and oxygen saturation. Immediately triage unstable patients who have [Hypotension, Altered Level of Consciousness, Hypoxia, stridor or other signs of upper airway obstruction, arrhythmia, respiratory Rate >40 breaths per minute, Accessory muscle use with retractions and cyanosis], then Initial management of acute distress by administering high flow oxygen, treat and evaluate hypoxia if present and finally treatment of the specific cause (*Braithwaite*, 2002; *Fangman*, 2001).


Differential diagnosis and early treatment is a clinical challenge for them that requires complex decision making in order to achieveing hemodynamic balance, improving functional capcity and decrease mortality.

Aim of the Work

The aim of this work is to discuss mechanism, differential diagnosis, physiology and management of acute dyspnea.

Pathophysiology of Dyspnea

The respiratory system is dependent upon adequate ventilation to supply oxygen, remove carbon dioxide, and help maintain acid-base homeostasis. Ventilation responds to changes in the arterial carbon dioxide tension (PaCO₂), arterial oxygen tension (PaO₂), and pH (Fig. 1), and may be modified in response to a number of mechanical and irritant stimuli arising from various structures within the thoracic cage, and probably from within muscles and joints during exercise (*Kazemi et al.*, 2002).

Relationship between arterial PCO $_2$ (left panel) and PO $_2$ (right panel) and minute ventilation in normal subjects. Stimulation of ventilation occurs with a small rise in PCO $_2$, but requires a large fall in PO $_2$.

PCO ; : arterial carbon dioxide tension; PO ; : arterial oxyen tension.

Fig. (1): Regulation o ventilation (Weiss et al., 1984).

Broadly viewed, the respiratory control mechanisms respond to input from neural and chemical receptors. Respiratory centers in the brain integrate these inputs and provide neuronal drive to the respiratory muscles, which maintain upper airway patency and drive the thoracic