

A FRAMEWORK FOR RAPID NUMERICAL WELL TEST ANALYSIS USING AN OPEN SOURCE SIMULATOR

By Ahmed Galal Al-Qassaby Al-Metwally

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

A FRAMEWORK FOR RAPID NUMERICAL WELL TEST ANALYSIS USING AN OPEN SOURCE SIMULATOR

By Ahmed Galal Al-Qassaby Al-Metwally

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Mohammed H. Sayyouh

Prof. Dr. Ahmed H. El-Banbi

Professor of Petroleum Engineering Petroleum Engineering Department Faculty of Engineering, Cairo University Professor of Petroleum Engineering Petroleum Engineering Department Faculty of Engineering, Some University

A FRAMEWORK FOR RAPID NUMERICAL WELL TEST ANALYSIS USING AN OPEN SOURCE SIMULATOR

By Ahmed Galal Al-Qassaby Al-Metwally

A Thesis Submitted to the
Faculty of Engin-eering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Approved by the Examining Committee	
Prof. Dr. Mohammed H. Sayyouh	Thesis Main Advisor
Prof. Dr. Ahmed H. El-Banbi	Advisor
Prof. Dr. Khaled A. Abdel-Fattah	Internal Examiner
Dr. Mohamed A. Samir - SAHARA OIL & GAS (Operation	External Examiner on General Manager)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer's Name: Ahmed Galal Al-Qassaby Al-Metwally

Date of Birth: 23/1/1991 **Nationality:** Egyptian

E-mail: Ahmed.galal85@yahoo.com

Phone: +2 01148059662 **Address:** Mansoura-Egypt

Registration Date: 1/10/2012 **Awarding Date:** 2017

Degree: Master of Science **Department:** Petroleum Engineering

Supervisors:

Prof. Mohammed H. Sayyouh Prof. Ahmed H. El-Banbi

Examiners:

Porf. Mohamed H. Sayyouh (Thesis Main Advisor)

Porf. Ahmed H. El-Banbi (Advisor)

Prof. Khaled A. Abdel-Fattah (Internal Examiner)
Dr. Mohamed A. Samir (External Examiner)
- SAHARA OIL & GAS (Operation General Manager)

Title of Thesis:

A Framework for Rapid Numerical Well Test Analysis Using an Open Source Simulator

Key Words:

Well Testing; Simulation; Unstructured Grids; MRST; Eclipse

Summary:

In conjunction with the Open Porous Media (OPM), SINTEF Company in Oslo have released the Matlab Reservoir Simulation Toolbox (MRST) aiming to function as an efficient platform for implementing new ideas and discretization methods in reservoir simulations applications. MRST has been developed as an open source program under the General Public License (GPL¹), and in this thesis, the author intends to modify the existing source code of MRST (Release: 2016b) to implement an unstructured gridding algorithm has the ability to conform the basic geological features of the reservoir as an extension to the black oil framework. The governing equations are evaluated using the finite-volume method and the system of equations is solved fully-implicitly using the Newton-Raphson method. The created model in this thesis is used to build a numerical well testing models to tune the analytical solution results, validated versus the recorded pressure signals from the test, the analytical type curves, and Schlumberger reservoir simulator; Eclipse, to give a better representation for the geological features and the petro-physical properties of the reservoir using an easy procedure to construct the grid and to assign these properties.

¹ <u>http://www.gnu.org/licenses/gpl.html</u>

Acknowledgments

I would like to express my gratitude to my supervisors, Prof. Mohammed H. Sayyouh and Prof. Ahmed H. El-Banbi. I would like to thank them for providing valuable feedback, input, constructive criticism and support during the course of this thesis

Dedication

I wish to dedicate this thesis to my family for their continued support and encouragement.

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	III
TABLE OF CONTENTS	V
LIST OF TABLES	VII
LIST OF FIGURES	IX
NOMENCLATURE	XI
ABSTRACT	XIII
CHAPTER 1 : INTRODUCTION	
CHAPTER 2 : LITERATURE REVIEW	
2.1. Unstructured Gridding Literatur. 2.2. Numerical Well Testing Literature. 2.3. Concluding Remarks on The Literature Review.	6
CHAPTER 3: STATEMENT OF THE PROBLEM AND OBJECTIVES	11
3.1. PROBLEM STATEMENT	
CHAPTER 4: UNSTRUCTURED GRIDDING ALGORITHM TERMINOLOGY	
4.1. GRID TERMINOLOGY. 4.2. UNSTRUCTURED GRIDDING. 4.3. GRIDDING STEPS. 4.4. GRIDDING ALGORITHM APPLICATION.	16 17
CHAPTER 5: FORMULATION OF THE FLOW EQUATIONS	AND
PROGRAM DEVELOPMENT	
5.1. FORMULATION OF FLOW EQUATIONS	29 29
5.2.2. Matlab Reservoir Simulation Toolbox (MRST)	30
5.2.2. Matlab Reservoir Simulation Toolbox (MRST)	30

6.3. Validati	ON CASES	38
6.3.1.	Case 1: Draw Down Test of Single Oil Well	44
6.3.2.	Case 2: Variable Rate Draw Down Test of Single Oil Well	48
6.3.3.	Case 3: Buildup Test of Single Oil Well	50
6.3.4.	Case 4: Variable Rate Buildup Test of Single Oil Well	54
6.3.5.	Case 5: Buildup Test of Single Gas Well	56
6.3.6.	Case 6: Injectivity Test of Single Water Well	57
6.3.7.	Case 7: Fall off Test of Single Water Well	59
6.3.8.	Case 8: Draw Down Test of Gas Hydraulically Fractured	
	Well	61
6.3.9.	Case 9: Buildup Test of Single Oil Well with A Sealing Fault	72
6.3.10.	Case 10: Interference Test Between Two Oil/Water Well	77
6.3.11.	Case 11: Draw Down Test of Single Horizontal Oil Well	81
6.3.12.	Case 12: Draw Down Test of Single Horizontal Oil Well with	
	Transverse Fractures	87
6.4. RESULTS 1	Discussion	91
CHAPTER 7:	CONCLUSIONS AND RECOMMENDATIONS	93
7.1. CONCLUS	IONS	93
7.2. RECOMME	ENDATIONS	94
REFERENCES		95

List of Tables

Table 2.1: Summary of a selected literature related to adapting unstructured grid	s to the
geological features	4-5
Table 2.2: Summary of a selected literature related to numerical well testing	8-9
Table 6.1: Case 1-7 description	40
Table 6.2: Case 8 description	65
Table 6.3: Case 8 sensitivities	70
Table 6.4: Case 9 description	75
Table 6.5: Case 10 description	79
Table 6.6: Case 11 description	84
Table 6.7: Case 12 description	90