

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

EFFECT OF IONIC EXCHANGE ON THE PROPERTIES OF THE CLAY USED IN CASTING MOLDS

210/0

Thesis submitted

By

Mohammed Ali Moussa

B.Sc., Faculty of Science

for M.Sc. degree in Materials Science

Department of Materials Science Institute of Graduate Studies and Research University of Alexandria

()

J.J. Hosaad

SUPERVISORS:

Prof. Mohammed El-Gamal

Department of Materials Science, Vice Dean of Institute of Graduate Studies and Research, University of Alexandria.

Dr. Waffa Koth Mekhemer

Lecturer,
Department of Materials Science,
Institute of Graduate Studies and Research,
University of Alexandria.

To my Wife,

To my Children;
Marawan and Mona

TABLE OF CONTENTS

ACKN	Pag NOWLEDGEMENTSI	_
SHIM	MARY	II
	OF FIGURESI	
LIST	OF TABLESV	II
<u>CHA</u>	PTER I	
INTI	RODUCTION	
I.1	CLAY MINERALOGY	1
I.2	STRUCTURE OF CLAY MINERALS	2
	I.2.1 Octahedral Unit	2
	I.2.2 Tetrahedral Unit	2
	I.2.3 Two - Layer Minerals	5
	I.2.4 Three - Layer Minerals	5
	I.2.5 Non - Expanding Clay (Kaolinites)	7
	I.2.6 Expanding Clay (Montmorillonites)	8
I.3	GENERAL PROPERTIES OF CLAY MINERAL 1	2
	I.3.1 Isomorphous Substitution	12
	1.3.2 Clay - Water Interaction	6
	I.3.3 Swelling Property	19
	1.3.4 Plasticity	0.

I.4	STRUCTURAL CHARACTERIZATION OF CLAY MINERALS	20
	I.4.1 Quantitative Evaluation of Clay (Chemical Analysis)	21
	I.4.2 X-ray Diffraction (XRD)	21
	1.4.3 Thermal Analysis	22
1.5	BENTONITES	26
	I.5.1 Mineralogy of Bentonites	28
	I.5.2 Properties and Uses of Bentonites	29
I.6	ACTIVATION OF BENTONITE	33
	1.6.1 Acid Activation	33
	I.6.2 Alkali Activation	33
I.7	THE FUNCTION OF CLAYS IN FOUNDRY MOULDING SANDS	35
1.8	AIM OF THE WORK	37
<u>CHA</u>	APTER II	
EXP	PERIMENTAL WORK	
II.1	MATERIALS	38
II.2	METHODS	38
	II.2.1 Sample Characterization	38
	II.2.2 Preparation of Homoionic Clay	40
	II.2.3 Determination of Physical Properties	40
	II.2.4 Determination of Foundry-Technical Properties	43

CHAPTER III

RESULTS AND DISCUSSION

III.1	SAMPLES CHARACTERIZATION	46	
III.2	DETERMINATION OF MONTMORILLONITE AND KAOLINITE		
	CONTENTS	60	
III.3	DETERMINATION OF GEL INDEX	60	
III.4	PHYSICAL PROPERTIES	65	
	III 4.1 Gas Permeability	65	
	III.4.2 Bulk Density	70	
	III.4.3 Green Compression Strength	74	
	III.4.4 Dry Compression Strength	78	
CONCLUSION 82		82	
REFERENCES 8			
ARABIC SUMMARY			

ACKNOWLEDGEMENTS

My best thanks are due to Dr. Waffa K. Mekhemer, Lecturer, Materials Science Department, Institute of Graduate Studies and Research, University of Alexandria, for suggesting the problem and supervising the work and writing up of the thesis.

I am greatly indebted to Prof. M. A. El-Gamal, Vice Dean of Institute of Graduate Studies and Research, for suggesting the problem, supervising the work and his contribution to the final form of this work has in fact made the writing of this thesis a real pleasure and most rewarding experience for me.

Sincere thanks to Eng. Owis Shalaby, Eng. Nady Moustafa, Eng. AbdEl Ghany Mehana and Eng. Mohamed Osman of El-Nasr Casting Company for their guidance and help during this study.

Thanks are also dedicated to the "Quality Control Dvision" in "El-Nasr- Casting Company "for kind help.

SUMMARY

The aim of the work is to study the effect of clay structure and its activation on the properties of clay used in casting molds. Egypt contains large amount of bentonitie clay. Thus Egyptian bentonitie clay from Hammamat and Qasr- El- Sagha were used as a binding agent in molding sand. The two different clays (Hammamat and Qasr- El – Sagha) were investigated and evaluated for application in foundry.

The chemical and mineralogical composition of the received samples were determined by X-ray fluorescence, X-ray diffraction and thermal analysis. The samples were activated by using NaCl solution as activator ranging from 0-10% to produce Nabentonite clay suitable as bonding agent for molding sand in foundries. The physical properties of the two bentonite samples including moisture content, the cation exchange capacity, Gel index and the specific surface area were determined to qualify clay as binder for molding sand. The sand was mixed with the investigated clay, unactivated and activated in three contents (5%, 7% & 9%) at different water ratios. The foundry-technical properties of the two bentonitic samples including gas permeability, bulk density, green compression strength and dry compression strength of sand bonded with bentonite were studied.

The results showed that montmorillonite and kaolinite minerals were detected in the clay fraction of the two samples Hammamat sample denotes as A and Qasr-El-Sagha sample denotes as B. Illite minerals was detected in the clay fraction of the sample (B) only. Quartz and calcite were detected in the non-clay fraction of sample B, but only Quartz was detected in the non-clay fraction of the sample (A). The semiquantitative analysis shows that sample (A) contains 86.26% montmorillonite and 13.73% kaolinite

7

while sample (B) contains 58.4% montmorillonite, 39.0% kaolinite and 2.48% illite. The cation exchange capacities were 90 and 35 meq / 100 gm for sample A and sample B respectively, sample A shows large surface area (699.7 m²/g) compared to tower surface area of sample B (494.5).

Alkali activation of samples A and B using NaCI solution as activator improved the reheological and binding properties and this is appeared in the increasing of optimum green compression for sample A than B. These results are attributed to the higher bentonite content in sample A. So sample A is considered as a good sample for application in foundry comparing to sample B.

LIST OF FIGURES

Figure	
1. Diagrammatic sketch showing (a) single octahedral unit and (b) the	e sheet structure
of the octahedral units	3
2. Diagrammatic sketch showing (a) single silica tetrahedron and (b)	the sheet
structure of silica tetrahedrons arranged in an hexagonal network.	4
3. Atomic arrangement in the unit cell of (a) two-layer mineral and (b)))
three-layers mineral	6
4. Diagrammatic sketch of the structure of the kaolinite layer	9
5. Diagrammatic sketch of the structure of montmorillonite	11
6. Configuration of water net proposed by Hendricks and Jefferson	18
7. Different types of water associated with swelling clays	
(a) Adsorbed water molecules fixed on the clay surface	
(b) Bound or absorbed water molecules usually associated with c	ations found
between the layers of the clay structure.	
(c) Crystalline water present in the form of OH units	23
8. Illustration of the weight loss-temperature curves found for smect	ite and
palygoskite-sepiolite clays	25
9. Differential thermal analysis (DTA) of a montmorillonite (Schemat	ic) 27
10. X-ray diffractograms of sample from Hammamat (Sample A) with	h different
treatment	48
11. X-ray diffractograms of sample from Qasr-El-Sagha (Sample B)	with different
treatments	51