The Incidence of CMV Viraemia in Severe Aplastic Anemia Patients with Acute GVHD after Allogeneic Peripheral Blood Stem Cell Transplantation

Thesis

Submitted to faculty of medicine, Ain Shams University for partial fulfilment of master degree in Clinical Haematology

By

Mahmoud Elsayed Metwally M.B.B.Ch.

Under supervision of

Prof. Dr / Mohammed Osman Azzazi

Professor of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Prof. Dr / Mohamed Mahmoud Moussa

Professor of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Dr / Raafat Mohamed Abdel-fatah

Consultant of Medical Oncology-Clinical Haematology and BMT National Cancer Institute, Cairo University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

My most sincere gratitude is also extended to **Prof. Dr** / **Mohammed Osman Azzazi**, Professor of Internal Medicine-Clinical Haematology and BMT, Faculty of Medicine, Ain Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work. I really have the honor to complete this work under his supervision.

Words fail to express my appreciation to **Prof. Dr** / **Mohamed Mahmoud Moussa,** Professor of Internal Medicine- Clinical Haematology and BMT, Faculty of Medicine, Ain Shams University, for his great help, valuable suggestions and directions throughout the whole work.

I would like also to thank with all gratitude **Dr** / **Raafat Mohamed Abdel-fatah**, Consultant of Medical OncologyClinical Haematology and BMT, National Cancer Institute,
Cairo University, for the efforts and time he has devoted to
accomplish this work.

Last but not least, I can't forget to thank all members of my Family, especially my parents, my Husband and my kid for pushing me forward in every step in the journey of my life.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Severe Aplastic Anemia	5
Allogeneic Hematopoietic Stem Cell Transplantation in SAA	33
Patients and Methods	95
Results	110
Discussion	124
Summary & Conclusion	129
References	130
Arabic Summary	

List of Abbreviations

Abbr.	Full-term		
aGVHD	Acute graft versus host disease		
ASCT	Autologus stem cell transplantation		
AuHSCT	Autologus stem cell transplantation		
BAL	Bronchoalveolar lavage		
BM	Bone marrow		
Bu	Busulphan		
cGVHD	Chronic graft versus host disease		
IST	Immunosuppressive therapy		
CR	Complete remission		
NMDP	National Marrow Doner Program		
CIBMTR	Center for International Blood and Marrow		
	Transplantation Research		
ARC	Absolute Reticulocyte Count		
ALC	Absolute Lymphocyte Count		
CRm	molecular CR		
CSA	Cyclosporin A		
Cy	Cyclophosphamide		
DAH	Diffuse alveolar haemorrhage		
DIC	Disseminated intravascular coagulation		
PRCA	Pure Red Cell Aplasia		
EBMT	European Bone Marrow Transplant		
ES	Engrafment syndrome		
FDP	Fibrin degradation products		
Flu	Fludarabine		
G-CSF	Granulocyte colony stimulating factor		
GM-CSF	Granulocyte macrophage colony stimulating		
GVHD	factor		
GVL	Graft versus host disease		
SAA	Graft versus leukemia		
CMV	Severe Aplastic Anemia		
allo-SCT	Cytomegalovirus		

HSCT Allogeneic stem cell transplantation
Hematopoietic stem cell transplantation

AML Invasive fungal infections
MDS Acute Myeloid Leukemia
MDS/MPN Myelodysplastic syndrome

MHA myelodysplastic/myeloproliferative neoplasm

MPFC Microangiopathic haemolytic anemia MPO multiparametric flow cytometry

MRD Myeloperoxidase

MSD Minimal residual disease NCCN matched sibiling donor

NK National Comprehensive Cancer Network

NMA Natural killer

PNH Non myeloablative

ATG Paroxysmal Nocturnal Hemoglobinemia

NSE Antithymocyte Globulin
PAS nonspecific esterase
PB periodic acid-Schiff
PBSC Peripheral blood

PCP Peripheral blood stem cell Pneumocystitis pneumonia

PR Prognostic index RIC Peripheral blood

SOS Reduced intensity conditioning **TBI** Sinusoidal obstruction syndrome

TMA Total body irradiation

TNC Thrombotic microangiopathy

UCB Total nucleated count URD Unrelated Cord blood

VOD Unrelated donor

VZV veno-occlusive diseaseWBC Varicella zoster virusWHO White blood count

World Health Organization

List of Tables

Eable No	v. Eitle	Page No.
Table (1):	Some drugs and Chemicals associate aplastic anemia	
Table (2):	Causes of pancytopenia	
Table (3):	Classification of aplastic anemia:	
Table (4):	Summary of investigations required diagnosis of SAA	for the
Table (5):	Criteria of aplastic anemia	25
Table (6):	Severe aplastic anemia	26
Table (7):	Very severe AA	26
Table (8):	Staging of aGvHD:	55
Table (9):	Grade of aGvHD Degree of organ involvement	55
Table (10):	Demographic data distribution of the group.	•
Table (11):	C.O. Death distribution of the study	
Table (12):	Alive Death distribution of the study	group 112
Table (13):	AGVHD distribution of the study gr	oup 113
Table (14):	CMV IgG pre BMT distribution of the study group.	
Table (15):	CMV IgM pre BMT distribution of t study group.	
Table (16):	CMV PCR post BMT distribution of study group.	

Table (17):	Relation between AGVHD and CMV viremia post BMT	17
Table (18):	DFS and OS distribution of the study group	18
Table (19):	Kaplan-Meier showing DFS according to AGVHD (2/4)	19
Table (20):	Kaplan-Meier showing OFS according to AGVHD (2/4)	20
Table (21):	Kaplan-Meier showing DFS according to CMV PCR post BMT	21
Table (22):	Kaplan-Meier showing OS according to CMV PCR post BMT 1	22
Table (23):	AGVHD and CMV viremia post BMT 1	23

List of Figures

Figure No.	Eitle	Page No.
o agricus . ca.	0000	o ago . ca.

Figure (1):	Pathophysiology of acquired aplastic anemia6
Figure (2):	Venn diagram of the clinical and pathophysiologic relationships among the bone marrow failure syndromes, leukemia, and autoimmune diseases
Figure (3):	Pie chart gender distribution of the study group
Figure (4):	Pie chart alive distribution of the study group
Figure (5):	Pie chart AGVHD/ 2-4 distribution of the study group
Figure (6): 1	Pie chart CMV IgG pre BMT distribution of the study group
Figure (7):	Pie chart CMV IgM pre BMT distribution of the study group
Figure (8):	Pie chart CMV PCR post BMT distribution of the study group116
Figure (9):	Relation between AGVHD and CMV viremia post BMT
Figure (10):	DFS and OS distribution of the study group. 118
Figure (11):	Kaplan-Meier showing DFS according to AGVHD (2/4)119

Figure (12): Kaplan-Meier AGVHD (2/4)	\mathcal{C}		C		120
Figure (13): Kaplan-Meier CMV PCR pos	showing	DFS	according	to	
Figure (14): Kaplan-Meier CMV PCR pos	_		_		122
Figure (15): AGVHD and	CMV vire	mia p	ost BMT		123

Abstract

Background: Aplastic anemia (AA) is defined as pancytopenia with a hypocellular bone marrow in the absence of abnormal infiltration or increased reticulin. Aim of the Work: This retrospective study evaluates the incidence of CMV viraemia in severe aplastic anemia patients who developed acute GVHD after allogeneic SCT in the time period from 2010 to 2015 regarding: The correlation between acute GVHD and the incidence of CMV CMV-related mortality. Disease-free survival (DFS). Overall survival (OS). Patients and Methods: Patients with severe aplastic anemia (SAA) who underwent allogeneic peripheral blood stem cell transplantation (PBSCT) at Nasser institute, in the time period between 2010 and 2015 (5 years) were included in the study. Results: In this study 28 patients (27.18 %) developed aGVHD and 11 patients (10.6 %) developed CMV viremia. 6 patients with aGVHD developed CMV viremia (P-value=0.03). Conclusion: In conclusion the use of CMV prophylaxis routinely with new agents with lower toxicity, especially in patients at high risk of CMV replication, might reduce the incidence of CMV replications, reducing so the morbidity and mortality, and according to some studies may also reduce the incidence of aGVHD and its related morbidity and mortality. **Recommendations:** Further studies are needed to the relationship between CMV and acute GVHD.

Key words: aplastic anemia, CMV, GVHD, pancytopenia

Introduction

plastic anemia (AA) is defined as pancytopenia with a hypocellular bone marrow in the absence of abnormal infiltration or increased reticulin. AA can be inherited or acquired. AA is classified as non-severe, severe (SAA) and very severe based on the degree of the peripheral blood cytopenias. Bone marrow transplantation is the treatment of choice for young patients (age of <40 years) with SAA who have a histocompatible (HLA)-matched donor (*Young et al.*, 2006).

Despite progress in immunosuppressive and antiviral therapy, acute graft-versus-host disease (aGVHD) and cytomegalovirus (CMV) infection remain important complications after allogeneic stem cell transplantation (allo-SCT) (*Boeckh et al.*, 2009).

Multiple studies have shown a pathogenetic association between CMV replication and aGVHD. GVHD and its treatment put patients at risk for CMV replication. On the other hand, CMV may also play a role in the development of GVHD. CMV-infected endothelial cells have been shown to produce inflammatory cytokines such as interleukin 6. These inflammatory responses in patients after allo-SCT with CMV replication could thereby contribute to the initiation of aGVHD (*Larsson t al., 2004; Cantoni et al., 2010*).

The most common clinical manifestations of CMV disease in allo-SCT recipients are pneumonitis, hepatitis and gastroenteritis. The introduction of prophylactic or preemptive antiviral drug treatment during this early post transplantation period resulted in a marked reducton of the incidence of CMV pneumonia (*Ljungman*, 2008).

The most important risk factors for CMV disease after allogeneic SCT are the serologic status of the donor and recipient. CMV-seronegative patients receiving stem cells from a CMV-seronegative donor (D-/R-) have a very low risk of primary infection if CMV safe blood products are used. Other risk factors for CMV infection include the use of high-dose corticosteroids, T-cell depletion, acute and chronic GVHD, the use of antithymocyte globulin, conditioning regimens containing fludarabine, high CMV viral load, and the use of mismatched or unrelated donors (*Walker et al.*, 2007; *Mori and Kato*, 2010).

The serologic determination of CMV-specific antibodies (IgG and IgM) is important for determining a patient's risk for CMV infection after transplantation but cannot be used for the diagnosis of CMV infection or disease. Polymerase chain reaction (PCR) is the most sensitive method for detecting CMV. Quantitative PCR (qPCR) relies on the amplification and quantitative

measurement of CMV DNA, while at the same time maintaining high specificity. High levels of DNA in blood is a good predictor of CMV disease in HSCT recipients (*Boeckh et al.*, 2003).

Aim of the Work

his retrospective study evaluates the incidence of CMV viraemia in severe aplastic anemia patients who developed acute GVHD after allogeneic SCT in the time period from 2010 to 2015 regarding:

- The correlation between acute GVHD and the incidence of CMV
- CMV-related mortality.
- Disease-free survival (DFS).
- Overall survival (OS)