SOME PHYSIOLOGICAL STUDIES ON WHEAT PLANT GROWING UNDER SALINITY STRESS CONDITIONS

By

SHIREF HASSAN MORGAN

B.Sc. Agric., Cairo University, 2000

THESIS

Submitted in Partial Fulfilment of the Requirements For the Degree of

Master of Science

In

Agricultural Sciences (Plant Physiology)

Department of Agricultural Botany
(Plant Physiology Section)
Faculty of Agriculture
Cairo University
EGYPT

2007

APPROVAL SHEET

SOME PHYSIOLOGICAL STUDIES ON WHEAT PLANT GROWING UNDER SALINITY STRESS CONDITIONS

Master Thesis By

SHIREF HASSAN MORGAN

B.Sc. Agric., Cairo University, 2000

Approved by:
Dr. Saed Awad Shehata
Professor of Plant Botany, Fac. Agric., Ainshams University
Dr. Farghal Abdelhafiez Zeid
Professor of Plant Physiology, Fac. Agric., Cairo University
Dr. Ahmed Hussien Hanafy Ahmed
Professor of Plant Physiology, Fac. Agric., Cairo University
Dr. Eglal Mohamed Zaki Harb
Professor of Plant Physiology, Fac. Agric., Cairo University
Date: /11/2007

SUPERVISION SHEET

SOME PHYSIOLOGICAL STUDIES ON WHEAT PLANT GROWING UNDER SALINITY STRESS CONDITIONS

Master Thesis By

SHIREF HASSAN MORGAN

B.Sc. Agric., Cairo University, 2000

SUPERVISION COMMITTEE

Dr. Ahmed Hussien Hanafy Ahmed Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. Eglal Mohamed Zaki Harb Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. Mohamed Aziz Higazy Professor of Plant Physiology, Fac. Agric., Cairo University Name of Candidate: Shiref Hassan Morgan. Degree: Master Title of Thesis: Some physiological studies on wheat plants grown

under salinity stress conditions

Supervisors: Prof. Dr. Ahmed Hussien Hanafy Ahmed, Prof. Dr.

Eglal Mohamed Harb and Prof. Dr. Mohamed Aziz Higazy

Department: Agricultural Botany.

Branch: Plant Physiology. Approval: //2007

ABSTRACT

Two pot experiments were carried out in the wire house of the Faculty of Agriculture, Cairo University, during the two successive seasons, 2001-2002 and 2002-2003 under different soil salinity levels (0, 2000, 4000 and 6000ppm), as well as field experiment was carried out in Smosta, Baneswaf governorate during season 2003-2004 (under saline soil condition about 4200ppm), to investigate the effect of silicon and boron foliar applications on growth, yield and chemical composition of wheat (Triticum aestivum L.) var. Seets 1. In both pot experiments, wheat plants were sprayed twice (40 and 70 days after sowing) by silicon as sodium meta silicate (0, 250 and 1000ppm SiO₂), boron as boric acid (0 and 25ppm B) or its combined mixture. In field experiment, wheat plants were sprayed for three successive times (35, 60 and 85 days after sowing) by silicon (0, 250,500 and 1000ppm SiO₂), boron (0, 25 and 50ppm B) or its combined mixture. Under pot experiment two samples were taken at 60 and 90 from sowing, while in field experiment three samples were taken at 45, 70 and 90 from sowing, for growth characters and chemical analysis. Generally, silicon either alone or combined with boron increased most of the studied growth characters as well as yield and its components under both pots and field experiments. A synergistic effect was accompanied spraying of both silicon and boron. Both silicon and boron applications might correct to some extent the negative effect of salinity either on growth, yield or the nutrients uptake by plant. Moreover, under saline conditions of both pots and field experiments spraying silicon alone reduced total free-polyamines, with some exceptions, whereas boron either alone or combined with silicon increased total free-polyamines. Silicon applications either alone or combined with boron under different salinity levels increased gibberellic acid (GA₃) and cytokinins (CK) concentrations but abscisic acid (ABA) was decreased. However, no constant trend could be detected for indole-3-acetic acid (IAA) concentration.

Keywords: Salinity, Wheat, Silicon, Boron, Endogenous hormones, Polyamines, Nutrients

ACKNOWLEDGEMENT

Firstly my unlimited thanks to "Allah"

I wish to express my sincere thanks and appreciation to **Prof. Dr. A. H. Hanafy Ahmed,** Professor of Plant Physiology at the Faculty of Agriculture, Cairo University for suggesting the problem, supervision, continued assistance, willing advice and valuable help and their guidance through the course of study and revision the manuscript of this thesis.

My deepest appreciation and gratitude are offered to **Prof. Dr. Eglal Harb**, Professor of Plant Physiology in the same faculty for her keen supervision, sincere guidance, magnificent participation and unfailing interest suggestions.

My thanks are directed to **Prof. Dr. M.A. Higazy**Professor of Plant Physiology in the same Faculty for his
fatherly attitude during the course of this investigation.

Grateful appreciation is also extended to all staff members of Plant Physiology Branch, Agriculture Botany Department Faculty of Agriculture, Cairo University.

Special deep appreciation is given to my father, my mother, my wife and my friends. Also I feel deeply grateful to my dear country Egypt.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
Growth characters	5
Yield and yield components	21
Chemical composition	30
Physiological effects	72
MATERIALS AND METHODS	87
RESULTS AND DISCUSSION	101
1. Growth characters	101
a. Pot experiment	101
1. Effect of salinity	102
2. Effect of silicon	126
3. Effect of boron	134
b. Field experiment	140
1. Effect of silicon	140
2. Effect of boron	145
2. Yield and yield components	146
a. Pot experiment	146
1. Effect of salinity	146
2. Effect of silicon	156
3. Effect of boron	158
b. Field experiment	163
1. Effect of silicon	163
2. Effect of boron.	165
3. Chemical composition	166
a. Plant pigments	166
Pot experiment	166
a. Effect of salinity	166
b. Effect of silicon	178
c. Effect of boron	181

	2.]	Field 6	experiment	181
		a.	Effect of silicon	181
		b.	Effect of boron	184
b.	Organ	nic cor	nponents	185
	1. '	Total s	sugars	185
		a.	Pot experiment	185
			1. Effect of salinity	185
			2. Effect of silicon	193
			3. Effect of boron	195
		b.	Field experiment	197
			1. Effect of silicon	197
			2. Effect of boron	199
	2.	Total	soluble phenols	200
		a.	Pot experiment	200
			1. Effect of salinity	200
			2. Effect of silicon	206
			3. Effect of boron	208
		b.	Field experiment	210
			1. Effect of silicon	210
			2. Effect of boron	212
	3.	Total :	free amino acids	212
		a.	Pot experiment	212
			1. Effect of salinity	212
			2. Effect of silicon	220
			3. Effect of boron	222
		b.	Field experiment	223
			1. Effect of silicon	223
			2. Effect of boron	225
	4.	Prolin	e	225
		a.	Pot experiment	225
			1. Effect of salinity	225
			2. Effect of silicon	235
			3. Effect of boron	237

b. Field experiment	238
1. Effect of silicon	238
2. Effect of boron	238
5. Polyamines	240
a. Pot experiment	240
1. Effect of salinity	240
2. Effect of silicon and boron	245
b. Field experiment	247
1. Effect of silicon and boron	247
c. Inorganic components	248
Pot experiment	248
a. Effect of salinity	248
b. Effect of silicon	275
c. Effect of boron	281
2. Field experiment	282
a. Effect of silicon	282
b. Effect of boron	293
d. Phytohormone under pot experiment	294
1. Effect of salinity	294
2. Effect of silicon	298
3. Effect of boron	301
CONCLUSION	305
SUMMARY	307
REFERENCES	321
ARABIC SUMMARY	

LIST OF TABLES

No	Title	Page
1	Some mechanical and chemical properties of the used soil under pot experiment	88
2	Some mechanical and chemical properties of the used soil under field experiment	91
3	Shoot height of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	102
4	Shoot height of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season.	103
5	Root length (cm) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	104
6	Root length (cm) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season.	105
7	Leaves area (cm ²) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season.	106
8	Leaves area (cm ²) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season.	107
9	Leaves number of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002	

	season	108
10	Leaves number of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season.	109
11	Number of tillers at the second sample date (90 day after sowing) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiments of the two successive seasons 2001-2002 and 2002-2003	110
12	Shoot fresh weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season.	111
13	Root fresh weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	112
14	Whole plant fresh weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	113
15	Shoot fresh weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	114
16	Root fresh weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season.	115
17	Whole plant fresh weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during	117
	2002-2003 season	116

18	Shoot dry weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season.
19	Root dry weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season.
20	Whole plant dry weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season.
21	Shoot dry weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season.
22	Root dry weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season.
23	Whole plant dry weight (g) of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season
24	Shoot height (cm), number of tillers and leaf area (cm ²) of wheat plants sprayed by different levels of silicon and boron under saline field (about 4200ppm) condition
25	Leaf area (cm ²) and leaf number of wheat plants sprayed by different levels of silicon and boron under saline field (about 4200ppm) condition
26	Shoot, root and whole plant dry weight (g) of wheat plants sprayed by different levels of silicon and boron under saline field (about 4200ppm) condition

27	Spikes number and spikes weight (g)/plant of wheat plant sprayed by different levels of silicon and boron under different saline soil conditions in pot experiment during 2001-2002 season	147
28	Straw weight (g)/plant and grains number of wheat plant sprayed by different levels of silicon and boron under different saline soil conditions in pot experiment during 2001-2002 season.	148
29	Grains weight (g)/plant and weight of 1000 grain (g) of wheat plant sprayed by different levels of silicon and boron under different saline soil conditions in pot experiment during 2001-2002 season	149
30	Spikes number and spikes weight (g)/plant of wheat plant sprayed by different levels of silicon and boron under different saline soil conditions in pot experiment during 2002-2003 season	150
31	Straw weight (g)/plant and grains number of wheat plant sprayed by different levels of silicon and boron under different saline soil conditions in pot experiment during 2002-2003 season	151
32	Grains weight (g)/plant and weight of 1000 grain (g) of wheat plant sprayed by different levels of silicon and boron under different saline soil conditions in pot experiment during 2002-2003 season	152
33	Spikes number, spikes weight (g/plant), straw weight (t/fad.), grains number/plant, grains weight (ardab/fed.) and weight of 1000 grains (g) of wheat plants sprayed by different levels of silicon and boron under saline field (about 4200ppm) condition	164
34	Chlorophyll a concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions	
	in pot experiment during 2001-2002 season	167

35	Chlorophyll a concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	168
36	Chlorophyll b concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	169
37	Chlorophyll b concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	170
38	Total chlorophyll concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	171
39	Total chlorophyll concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	172
40	Total carotenoids concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	173
41	Total carotenoids concentration (mg/g F.W.) in the leaves of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	174
42	Chlorophyll a and chlorophyll b concentrations (mg/g F.W) in the leaves of wheat plant sprayed by different levels of silicon and boron under saline field (about 4200ppm) condition	182

43	Total chlorophyll and total carotenoids concentrations (mg/g F.W) in the leaves of wheat plant sprayed by different levels of silicon and boron under saline field (about 4200ppm) condition	183
44	Total soluble sugar concentration (mg glucose/g F.W.) in the the shoot of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season.	186
45	Total soluble sugar concentration (mg glucose/g F.W.) in the the shoot of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	187
46	Total soluble sugar concentration (mg glucose/g F.W.) in the root of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	188
47	Total soluble sugar concentration (mg glucose/g F.W.) in the root of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	189
48	Total sugars (mg glucose/g F.W.) in the shoots and roots of wheat plant sprayed by different levels of silicon and boron under saline field (about 4200ppm) condition	198
49	Total soluble phenol concentration (mg/g F.W) in the shoot of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2001-2002 season	201
50	Total soluble phenol concentration (mg/g F.W) in the shoot of wheat plants sprayed by different levels of silicon and boron grown under different saline soil conditions in pot experiment during 2002-2003 season	202