

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

624,1

TWO-DIMENSIONAL RECTIFICATION TECHNIQUES FOR QUICKBIRD SATELLITE IMAGES

By

Eng. Ayman Abdulrahman Al-Yousef

B.Sc. in Civil Engineering. Damascus University, 2001
A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
April 2005

TWO-DIMENSIONAL RECTIFICATION TECHNIQUES FOR QUICKBIRD SATELLITE IMAGES

By

Eng. Ayman Abdulrahman Al-Yousef

B.Sc. in Civil Engineering. Damascus University, 2001
A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering

Under the Supervision of

Prof. Dr. Moustafa Ahmed Baraka

Professor of
Surveying and Geodesy
Public Works Department
Faculty of Engineering
Cairo University

Dr. Hazem Fathy Barakat

Associate Professor of
Surveying and Phoyogrammetry
Public Works Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT April 2005

TWO-DIMENSIONAL RECTIFICATION TECHNIQUES FOR QUICKBIRD SATELLITE IMAGES

By

Eng. Ayman Abdulrahman Al-Yousef

B.Sc. in Civil Engineering. Damascus University, 2001
A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering

Approved by the Examining Committee

Prof. Dr. Mahmood El-Nokrashy Osman

Professor of Surveying and Photogrammetry Faculty of Engineering, El-Azhar University

Prof. Dr. Mohammed Shawky El-Ghazaly

Professor of Surveying and Geodesy Faculty of Engineering, Cairo University

Prof. Dr. Moustafa Ahmed Baraka

Professor of Surveying and Geodesy Faculty of Engineering, Cairo University, (Thesis Main Advisor)

Dr. Hazem Fathy Barakat

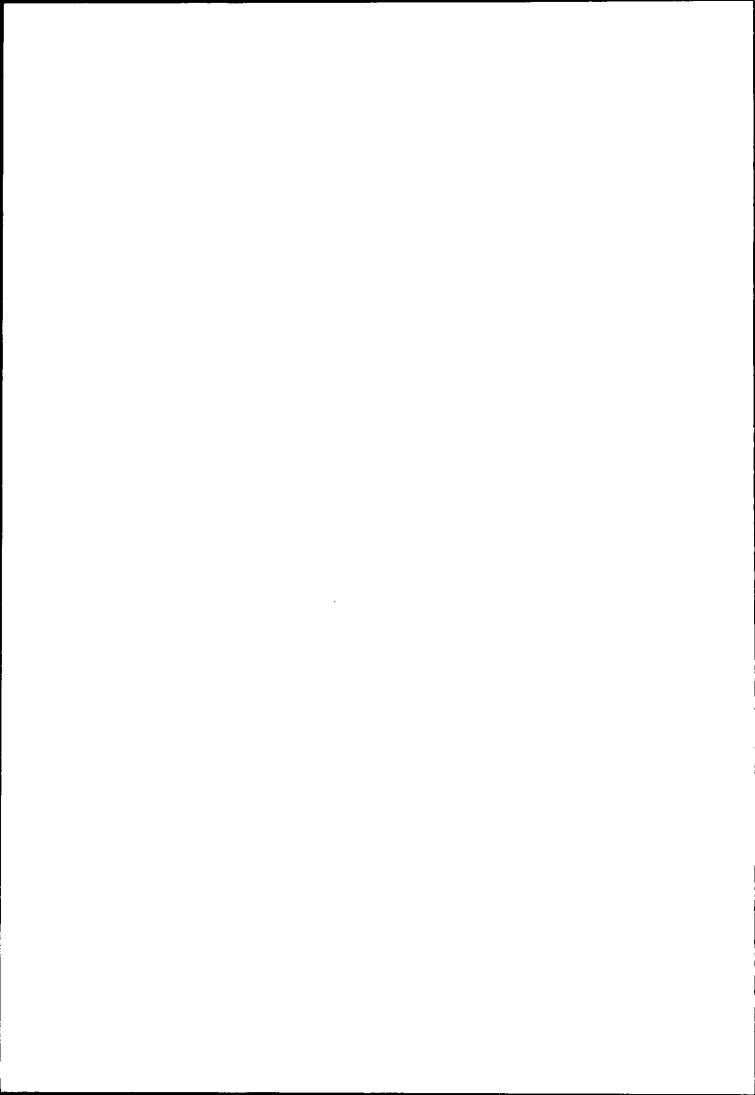
Associate Professor of Surveying and Photogrammetry Faculty of Engineering, Cairo University

Hawle News

Mather.

...t. gent

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT April 2005


TABLE OF CONTENTS

LIST OF TABLES	IV
LIST OF FIGURES	VIII
LIST OF TERMS	XI
LIST OF ABBREVIATIONS	XV
ACNOWLEDGMENTS	XVIII
ABSTRACT	XIX
CHAPTER (1) INTRODUCTION	
1.1 Statement of the problem	1
1.2 The Research objectives	2
1.3 The Organization of the research	2
CHAPTER (2) LITERATURE REVIEW	
2.1 Review of remote sensing systems	4
2.2 Review of geometric correction of high resolution satellite images	17
2.3 Overview of rectification's mathematical models	24
CHAPTER(3) THEORY AND MODELING OF SATELLITE	
GEOMETRY	
3.1 The Geometric correction process	29
3.2 The Used satellite models	29
3.3 The Rectification process	30
3.4 The Orthorectification process	31
3.5 Single frame orthorectification	33
3.6 The Orthorectification using digital elevation model(DEM)	34
3.7 Assessment of the attainable results	36
3.8 Resampling process	37

WORK	
4.1 Description of test area	38
4.2 Description of available data	39
4.2.1 Satellite images	39
4.2.2 Ground control points	40
4.3 The Rectification process	45
4.3.1 The first operator	47
4.3.2 The second operator	55
4.3.3 The effect of GCPs number on the rectification process	72
4.4 Orthorectification of Fayoum images	74
4.4.1 The first operator	81
4.4.2 The Second operator	82
4.4.3 The effect of GCPs number on the orthorectification process	91
CHAPTER (5) CONCLUSIONS AND RECOMMENDATIONS	
5.1 The Conclusions	96
5.2 The Recommendations	96
LIST OF REFERENCES	98
APPENDIX A: THE CONCEPT OF REMOTE SENSING	
A.1 Definition	102
A.2 The elements of remote sensing	102
A.3 The Wave theory	102
A.4 The particle theory	105
A.5 The interactions of EM energy	105
A.5.1 The interactions in the atmosphere	105
A.5.2 The interactions with earth features	107
A.6 Sensors	110
APPENDIX B:TABLES OF RESULTS	
B.1 The Rectification results	115
B.2 The orthorectification results	119
B.3 The effect of the number of control points	121

CHAPTER (4) METHODOLOGY AND EXPERIEMENTAL

B.3.1 The rectification process	121
B.3.2 The orthorectification process	122
APPENDIX C: ERDAS IMAGINE PROGRAM	
C.1 Image display	123
C.2 The geometric correction process	125
APPINDIX D: INTERGRAPH IMAGE ANALYST PROGRAM	
D.1 The design file generation	130
D.2 Opening satellite image	131
D.3 The rectification process	131

