

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

APPROVAL SHEET

Title of Ph. D. Thesis

Characteristics of the Interactions of Helium Fragment from 200A GeV ³²S – Emulsion Collisions

By

Maha Fayed Abd-Elmoniem Abd-Elhafiez Submitted to Physics Department, Faculty of Science, Cairo University

Supervisors

Prof. Dr. Abdallah Abd-Elsalam

Professor of Nuclear Physics Physics Department

A. Akalelsolaw 28/3/2008 E.A. Shant

Prof. Dr. Elham Ahmed Shaat

Professor of Nuclear Physics

Physics Department

Prof. Dr. Zenat Ahmed Abou-Moussa Z. Abo- Nousa

Professor of Nuclear Physics

Physics Department

Prof. Dr. A. Refaat Ali

Head of Physics Department

Faculty of Science

Cairo University

539,757

Characteristics of the Interactions of Helium Fragment from 200A GeV 32S – Emulsion Collisions

By
Maha Fayed Abd-Elmoniem Abd-Elhafiez

Thesis
Submitted for the Degree of
Ph. D. of Science

To
Physics Department
Faculty of Science
Cairo University

FORWARD

This work was carried out at Mohamed El-Madi Nuclear Research Center, Experimental High Energy Physics Laboratory, Physics Department, Faculty of Science, Cairo University, Egypt.

ACKNOWLEDGEMENT

The author is deeply indebted to **Prof. Dr. A. Abdelsalam** for suggesting the work. His constructive comments, fruitful discussions, continuous support received have been very appreciated.

I wish to express my deep thanks and sincere gratitude to **Prof. Dr. E.A. Shaat** for her supervision, help and valuable advice. The sustainable support is greatfully acknowledged.

Most heartful thanks to **Prof. Dr. Z. Abou-Moussa** for her supervision, help, continuous encouragement and guidance.

The author appreciated very much the help of the members of the emulsion group of our laboratory.

Thanks are due to CERN authorities for providing our laboratory with the irradiated emulsion.

Finally I thank every one helped me to perform this work.

ABSTRACT

The aim of the present thesis is to study the interaction of the helium fragment emitted from the collisions of ³²S nuclei at 200A GeV with nuclear emulsion in order to check whether the interaction cross-section of the helium fragment differs from that of the primary accelerated helium beam. Since uptill now no primary helium beam at energy greater than Dubna energy is available, the present work could provide a good chance for obtaining valuable information about the characteristics of helium beam at higher energy.

A stack of Fuji emulsion film, was tangentially irradiated with 200A GeV 32 S ion beam. The exposure of this stack was carried out at the CERN SPS. The beam flux was 1×10^3 ions/cm 3 , the scanning was carried out along the track (fast in the forward direction and slow in the backward one).

The experimental value of the interaction mean free path and that of the interaction cross section of ³²S nuclei in the emulsion are consistant with the corresponding calculated values which are based on geometrical calculations.

The charge Z of each of all the projectile fragments PF's (having Z \geq 2) emitted within the fragmentation cone of an angle 0.072 degree, were measured using the δ -ray counting method.

This work is concerned with studying the doubly charged helium fragments and the characteristic of their interactions with emulsion. It was found that the fragmentation cross-section of different projectiles into helium fragments, does not depend on either projectile mass or incident energy.

All PF's with Z=2 (helium daughters of 200A GeV ³²S), were followed until either interact or leave the pellicles. The value of the interaction mean free path ($\lambda = 20.0 \pm 1.2$ cm) is in good agreement, with the corresponding value of the primary ⁴He at 3.7A GeV ($\lambda_{primary} = 19.93 \pm 0.60$ cm).

The multiplicity characteristics of the shower, grey and black particles produced in the interactions of ⁴He (³²S daughter) with emulsion nuclei were analyzed and compared with the corresponding values for ⁴He (200A GeV ³²S daughter) of P.L. Jain and with primary ⁴He at 3.7A GeV. An investigation was carried out to determine the energy of helium emitted from 200A GeV ³²S – Em and it was found to be ~ 124A GeV.

The multiplicity distribution of the shower particles produced in the interaction of helium with emulsion is well described by the universal KNO Scaling representation.

Each of the pseudorapidity distributions of the shower particles obtained at different impact parameters was fitted by a Gaussian distribution. The temperature of the pion emitting system was determined in each case, and compared with the critical temperature (~ 200 MeV) for phase transition between a gas of pions and quark-gluon plasma.

The angular distribution of the emitted grey and black particles are studied, where the forward ($\theta_{lab} < 90^{\circ}$) to backward ($\theta_{lab} \ge 90^{\circ}$) ratio, i.e, (F/B) were determined at different impact parameters. The values of (F/B)_g and (F/B)_b were found to be nearly independent of both the projectile mass number and incident energy. It was also found that the emission of the black particles is more isotropic than that of the grey ones.

CONTENTS

Ch		Page
Cn	napter 1: History of High Energy Nucleus – Nucleus	
	Collisions	1
1.1	Introduction	1
1.2	Interacting Modes of Relativistic Heavy Ions	3
	1.2.1 Nuclear Interactions	3
	1.2.1a Central Collisions	3
	1.2.1b Peripheral Collisions	5
1.3	Reaction Cross-Section and Mean Free Path	5
	1.3.1 The Hard Sphere Model	7
	1.3.2 The Overlap Model	7
	1.3.3 Soft Sphere Model	8
1.4	Nuclear Fragmentation	9
1.5	Projectile Fragmentation	9
1.6	Intranuclear Cascade Model	12
	1.6.1 Nucleon – Nucleus Interaction	12
	1.6.2 Nucleus – Nucleus Interaction	12
	1.6.3 Interactions Between Light Ions	13
1.7	Scaling Property of Multiple Distribution KNO Scaling	17
1.8	Statistical Model	18
1.9	The Quark Model	20
	1.9.1 Structure of Quark Model	20
	1.9.2 Quark Deconfinement	22
	1.9.3 Critical Energy Density for Quark Deconfinement	27
	1.9.4 Quark – Gluon Plasma	28
Ref	References of Chapter 1	

Chapter 2: Experimental Techniques		
2.1	Introduction (Nuclear Emulsion)	36
2.2	Details of the Emulsion Stack	38
2.3	Scanning Technique	40
	2.3.1 Area Scanning	40
	2.3.2 Along the Track Scanning	40
2.4	Microscopes Used Scanning and Measuring Microscope [The Russian Microscope (MSU-9)]	41
2.5	Measurements of Angles	42
	2.5.1 Measurements of the Projection Angle (Φ)	42
	2.5.2 Measurements of Dip Angle (α)	44
2.6	Specific Ionization	45
2.7	Classification of Charged Secondaries	47
	2.7.1 Shower Tracks	47
	2.7.2 Grey Tracks	47
	2.7.3 Black Tracks	47
2.8	Charge Identification for Relativistic Projectile Fragment	
	(RPF'S)	48
	2.8.1 Gap Density Method	48
	2.8.2 Integral gap Density Method for Charge	
	Identification	49
	2.8.3 Delta – Ray Counting Method	52
Re	eferences of Chapter 2	56
Cl	hapter 3: Experimental Results	57
3.1	General Characteristics of Inelastic Interactions of 200A	
	GeV 32S with Emulsion	57
	3.1.1 Interaction of 200A GeV ³² S Ions with Emulsion	
	Nuclei	57
	3.1.2 The Mean Free Path "λ" for 200A GeV ³² S	57
	3.1.3 The Cross-section for the Interaction of 200A GeV	
	³² S ions with Emulsion	60

3.2 Fragmentation of ³² S Nuclei	62
3.2.1 Introduction	62
3.2.2 Relative Production Rates of Z = 2 PF's at Different	
Energies and at Different Projectile Mass Numbers	65
3.2.3 Fragmentation Cross-Section for Different Projectile	
Emulsion Nucleus – Interaction	68
3.3 Inelastic Interactions of Helium Emerging from ³² S at	
200A GeV with Emulsion Nuclei	70
3.3.1 Multiplicity Characteristics of the Particle Produc-	
tion in the Interactions of Helium Daughter with	
Emulsion Nuclei	70
3.3.1.a Multiplicity Distributions of the Relativistic	. •
Shower Particles	71
3.3.1.b Multiplicity Distributions of the Secondary	, _
Grey Particles	78
3.3.1.c Multiplicity Distributions of the Secondary	, 0
Black Particles	81
3.4 Angular Characteristics of Shower, Grey and black	
Particles Emitted from the Interactions of ⁴ He Emerging	
from ³² S at 200A GeV with Emulsion Nuclei	86
3.4.1 Angular Characteristics of the Emitted Shower	
Particles	86
3.4.2 Angular Distribution of the Emitted Target	00
Fragments	98
3.4.2.a Angular Distribution of the Emitted Grey	70
Particles Particles	98
3.4.2.b Angular Distribution of the Emitted Black	70
Particles Particles	105
References of Chapter 3	110
General Conclusion	114
Appendix	118
	110
Arabic Abstract	

Chapter 1 History of High Energy Nucleus – Nucleus Collisions